生态环境

腾格里沙漠民勤实验点夏季沙丘CO2浓度变化

展开
  • 1. 陕西师范大学旅游与环境学院, 西安710062;
    2. 中国科学院地球环境研究所黄土与第四纪地质国家重点实验室, 西安710075;
    3. 中国科学院寒区旱区环境与工程研究所, 兰州730000
赵景波(1953-)|男|山东滕州人|博士|教授|博士生导师。主要从事第四纪和区域环境学研究

收稿日期: 2010-01-01

  修回日期: 2010-07-01

  网络出版日期: 2010-11-25

基金资助

教育部“长江学者”特聘教授项目(801813)

Study on the Change of Dune CO2 Concentration in Summer at Minqin in Tengger Desert

Expand
  • 1. College of Tourism and Environment, Shaanxi Normal University, Xi'an 710062;
    China;
    2. Institute of Earth Environment, CAS, State Key Laboratory of Loess and Quaternary Geology, Xi'an 710075, China;
    3. Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China

Received date: 2010-01-01

  Revised date: 2010-07-01

  Online published: 2010-11-25

摘要

为查明腾格里沙漠沙丘CO2浓度和昼夜变化规律,利用红外CO2监测仪在2009 年夏季对腾格里沙漠西南部的民勤沙丘CO2浓度变化进行了昼夜连续观测,研究了不同类型、不同深度沙丘CO2浓度变化。研究得出:所有实验点CO2浓度在深度上的变化与通常观测的不同,2 m和4 m处的CO2浓度都比1 m处的大;固定沙丘的昼夜CO2浓度累积值大于半固定沙丘的昼夜CO2浓度累积值,而半固定沙丘的昼夜CO2浓度累积值又大于流动沙丘的昼夜CO2浓度累积值;沙丘白天CO2浓度累积值高于夜间;在极端干旱的腾格里沙漠西南部,不论是固定沙丘、半固定沙丘还是流动沙丘,CO2浓度在一昼夜内也具有清楚的变化规律,即从当日09:00 左右到次日09:00 点左右均呈现由低到高再到低的变化,但CO2浓度升降相对于大气温度的升降具有一定的滞后性,滞后时间约1 ~ 3 h;沙丘CO2浓度和大气温度之间存在显著的正相关关系,温度是决定CO2昼夜浓度变化规律的主要因素。在极端干旱的民勤沙漠区,各类沙丘沙层中的CO2浓度都明显高于空气CO2浓度。

本文引用格式

赵景波, 邵天杰, 郁科科, 李恩菊, 成爱芳, 孟静静, 董治宝 . 腾格里沙漠民勤实验点夏季沙丘CO2浓度变化[J]. 地理科学进展, 2010 , 29(11) : 1368 -1374 . DOI: 10.11820/dlkxjz.2010.11.024

Abstract

We have measured the diurnal changes of dune CO2 concentration under different depth by using the infrared monitoring instruments in Minqin County in 2009, and combined the results with simultaneous temperature data. The results show that the CO2 concentration of -2 m and -4 m always greater than that of -1 m. The diurnal CO2 cumulative concentration from this research can be ranked as fixed dunes > semi-fixed dune > moving dune. The CO2 cumulative concentration is greater at daytime than at nighttime. For fixed, semi-fixed and moving sand dunes, the CO2 concentration has a changing law of“low to high and then to low”from the morning to the next morning, which is basically the same as the change of temperature, but the change of the former is later than that of the latter. There is a significant positive correlation between the CO2 concentration of dunes and atmospheric temperature, and temperature is the main factor determining the changing law of the dune CO2 concentration. In addition, the diurnal concentration of CO2 can be changed due to the difference in soil conditions, such as soil moisture, light and wind speed. So, it is of great significance to conduct research into the cause of global warming and the impacts of destruction of vegetation on atmospheric CO2, which can help to find out the changing law of dune CO2 concentration in 24 hours.

参考文献


[1] 彭少麟, 李跃林, 任海, 等. 全球变化条件下的土壤呼吸 效应. 地球科学进展, 2002, 17(5): 705-713.

[2] 袁道先. 碳循环与全球岩溶. 第四纪研究, 1993, 13(1): 17-24.

[3] Keeling R F. Global and he mispherical CO2 sinks deduced from changes in atmospheric concentration. Nature, 1996, 381: 218-221.

[4] 郎一环, 王礼茂, 王冬梅. 能源合理利用与CO2减排的国 际经验及其对我国的启示. 地理科学进展, 2004, 23(4) 28-34.

[5] 葛全胜, 戴君虎, 何凡能, 等. 过去300 年中国土地利用、 土地覆被变化与碳循环研究. 中国科学: D辑, 2008, 38 (2): 197-210.

[6] 李俊, 于强, 孙晓敏, 等. 华北平原农田生态系统碳交换 及其环境调控机制. 中国科学: D辑, 2006, 36(增刊Ι): 210-223.

[7] 王庚辰, 杜睿, 孔琴心, 等. 中国温带草原土壤呼吸特征 的实验研究. 科学通报, 2004, 49(7): 692-696.

[8] 石培礼, 孙晓敏, 徐玲玲, 等. 西藏高原草原化嵩草草甸 生态系统CO2净交换及其影响因子. 中国科学: D 辑, 2006, 36(增刊Ι): 194-203.

[9] 杨青, 吕宪国. 三江平原湿地生态系统土壤呼吸动态变 化的初探. 土壤通报, 1999(6): 254-256.

[10] 孙伟, David Williams. 利用稳定性同位素区分河岸C4 草地生态系统夜晚碳通量. 湿地科学, 2008, 6(2): 271-278.

[11] 张金霞, 鲁广民, 周党卫, 等. 草毡寒冻雏形土CO2释放 特征. 生态学报, 2001, 21(4): 544-549.

[12] 李月梅, 王跃思, 曹广民, 等. 开垦对高寒草甸土壤有机 碳影响的初步研究. 地理科学进展, 2005, 24(6): 59-65.

[13] 王一博, 王根绪, 程玉菲,等. 青藏高原典型寒冻土壤对 高寒生态系统变化的响应. 冰川冻土, 2006, 28(5): 633-642.

[14] Arnone J A, Zaller J G, Spehn E M, et al. Dynamics of root systems in native grasslands: Effects of elevated atmospheric CO2. New Phytologist, 2000, 147(1): 73-85.

[15] Pritchard S G, Rogers H H, Davis M A, et al. The influence of elevated atmospheric CO2 on fine root dynamics in an intact temperate forest. Global Change Biology, 2001, 7(7): 829-837.

[16] 刘绍辉, 方精云. 土壤呼吸的影响因素及全球尺度下温 度的影响. 生态学报, 1997, 17(5): 469-476.

[17] Matamala R, William S H. Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology, 2000, 6(8): 967- 979.

[18] 何师意. 岩溶土壤CO2浓度、水化学观测及其与岩溶作 用的关系. 中国岩溶, 1997, 16(4): 319-323.

[19] 麦克拉伦A D, 波得森·斯库金斯G H . 闵九康, 译. 土 壤生物化学. 北京: 农业出版社, 1984: 490-492.

[20] 郑聚锋, 张旭辉, 潘根兴, 等. 水稻土基底呼吸与CO2 排 放强度的日动态及长期不同施肥下的变化. 植物营养 与肥料学报, 2006, 12(4): 485-494.

[21] 秦小光, 蔡炳贵. 土壤温室气体昼夜变化及其环境影响 因素研究. 第四纪研究, 2005, 25(3): 376-389.

[22] 刘洪升, 刘华杰, 王智平, 等. 土壤呼吸的温度敏感性. 地理科学进展, 2008, 27(4): 51-64.

[23] 董云社, 章井申, 齐玉春, 等. 内蒙古典型草地CO2,N2O, CH4 通量的同时观测及其日变化. 科学通报, 2000, 45 (3): 318-322.

[24] 张金霞, 曹广民, 周党卫, 等. 退化草地暗沃寒冻雏形土 CO2释放的日变化和季节动态. 土壤学报, 2001, 38(1): 32-40.

[25] Savage K E, Davidson E A. Intramural variation of soil respiration in two New England forests. Global Biogeochemical Cycles, 2001, 15(2): 337-350.

文章导航

/