气候变化与降水

云南干季月蒸发量与常规气象要素的关系

展开
  • 云南省气候中心/云南大学地球环境与资源学院, |昆明 650034

网络出版日期: 2010-02-25

基金资助

国家自然科学基金项目(40675045)

Research on Relationships between Monthly Evaporation and Conventional Meteorological Elements during Dry Season in Yunnan

Expand
  • Yunnan Climate Center/College of Earth Environment and Resources in Yunnan University, Kunming 650034, China

Online published: 2010-02-25

摘要

基于112个站点干旱期4月39年蒸发皿蒸发量和常规地面气象观测8要素数据,应用EOF和典型相关分析,深入论证各常规气象要素与气候蒸发量的相关性,分析并比较各要素对蒸发量场总方差的解释能力;同时应用线性回归分析作为验证,并探寻多气象要素对蒸发量模拟的最优要素组合。结果显示,从单要素影响角度分析,常规地面气象观测要素与蒸发量相关性的排列次序为:平均相对湿度>平均气温>平均地面温度>日照时数>平均风速>平均水汽压>气压>降水量,这与蒸发的热力学和动力学理论解释相一致。回归分析验证了典型相关的主要结果;单个常规气象要素中平均相对湿度对气候蒸发量的模拟效果最好;基于平均相对湿度、平均气温、风速、日照时数和平均水汽压资料的前3个要素组合和全部5要素组合,分别是简便普通精度和高精度需求下常规气象要素推算模拟气候蒸发量的最优要素组合。本文加深了对气候蒸发量的相关认识,并对其模拟推算和空间分布量化有重要指导意义。

本文引用格式

黄中艳 . 云南干季月蒸发量与常规气象要素的关系[J]. 地理科学进展, 2010 , 29(2) : 138 -144 . DOI: 10.11820/dlkxjz.2010.02.002

Abstract

Based on pan-evaporation data of past years and other meteorological element data of conventional surface meteorological measurement from 112 weather stations, orthogonal expansion method and canonical correlation are used to investigate the correlativity between monthly evaporation and conventional meteorological elements and to analyze and compare the capacity for each conventional meteorological element to explain potential evaporation, while regression analysis is applied to validate the foregoing analysis results and to seek the optimalizing element combination for conventional meteorological elements to simulate evaporation. As it turned out, there were 6 conventional meteorological elements which had notable effects on evaporation. The degrees of correlation between conventional meteorological elements and evaporation were as follow: average relative humidity(H)>average temperature(T)>average land surface temperature(Dt)>sunshine duration(S)>average speed of air(W)>average vapor pressure(Vp)>average atmospheric pressure(P)>amount of precipitation(R). Among these essentials, essential H could explain 63.5% population variance of field variables for evaporation. T and Dt also had greater explanatory ability (more than 31% population variance interpreted). The explanatory ability of S, W, Vp and P to population variance of evaporation was relatively approximate about 20%. And precipitation had little effects on evaporation. All these were in accordance with the explanation of thermodynamics and dynamics in water evaporation.
  According to correlation analysis and regressive simulation, average relative humidity took precedence over other conventional meteorological elements in simulating evaporation. The combination of relative humidity attached speed of air was probably the best two-essential combinatory simulating evaporation. Based on average relative humidity, average temperature, average speed of air, sunshine duration and average vapor pressure, the first three-essential combination and five-essential combination were respectively the optimum combination simulating evaporation by conventional meteorological elements under simply-universal requirement and high-precision requirement. The three-essential combination generated an average relative error of fitting, 2.77%, in this simulation while the five-essential combination made the identical error equal to 1.96%.
  In the paper, mutuality of spatial distribution for essentials is analyzed by orthogonal expansion method and canonical correlation at the same time as correlativity of their temporal changes is investigated by regressive simulation (stepwise regression included). Both methods have validated and replenished opposite party reciprocally. So demonstration by reasoning is all-around and systematical here. The research has deepened the understanding related to potential evaporation, and is meaningful for reckoning evaporation and quantizing its spatial distribution.

参考文献


[1]   张祎,牛兰花,樊云. 葛洲坝蓄水以后库区蒸发水量的计算与分析. 水文,2000,20(3):126-129.

[2]   郝成元,吴绍洪,李双成. 基于SOFM的区域界线划分方法. 地理科学进展,2008,27(5): 121-127.

[3]   周晓东,朱启疆,孙中平,等. 中国荒漠化气候类型划分方法的初步探讨. 自然灾害学报,2002,11:125-131.

[4]  张新时. 植被的PE(可能蒸散)指标与植被—气候分类(一). 植物生态学报,1989,13(1): 1-9.

[5]   胡顺军,郭谨,王举林,等. 应用常规气象观测资料估算塔里木盆地水面蒸发量. 干旱区地理,2004,27(2):212 -214.

[6]   康绍忠. 干旱半干旱地区蒸发力的计算方法研究. 干旱区资源与环境,1987,1(1):132-141.

[7]   张敏,宛公展. 用不同气象要素估算蒸发力的模式研究. 气象,1995,21(2):36-40.

[8]   夏非, 张永战, 吴蔚. EOF分析在海岸地貌与沉积学研究中的应用进展. 地理科学进展, 2009, 28(2): 174-186.

[9]   于秀林. 多元统计分析. 北京: 中国统计出版社,2003:185-186,208-209.

[10] 黄茂怡,黄嘉佑,王勇,等. 近年来CCA在气候分析与气候预测中的应用. 北京大学学报(自然科学版), 2001,37(1):28-32.

[11] 靳正忠,雷加强,徐新文,等. 沙漠腹地咸水滴灌林地土壤养分、微生物量和酶活性的典型相关关系. 土壤学报,2008,45(6):312-316.

[12] 杨秀芹,钟平安. 蒸发皿蒸发量变化及其研究进展. 地球物理学进展,2008,23(5):1494-1498.

[13] 牛振红,孙明. 水面蒸发折算系数的对比观测实验与分析计算. 水文,2003,(3):187-190.

[14] 张建雄. 永暑礁蒸发量分析与推算. 海洋通报,2002,31(4):193-195.

[15] 谢贤群,王菱. 中国北方近50年潜在蒸发的变化. 自然资源学报,2007,22(5):272-276.

[16] 吴初梅,何鹏,戴平凤. 蒸发量季节变化特点与干旱发生关系的初步分析. 气象研究与应用,2008,29(3):8-11.

[17] 刘学锋,于长文,任国玉. 河北省近40年蒸发皿蒸发量变化特征及影响因素初探. 干旱区地理,2007,30(4): 507-512.

[18] 徐凤梅,余卫东,康邵钧. 商丘近44年蒸发量变化及其影响因子分析. 气象科技,2007,35(4):104-106.

[19] 周淑贞,张如一,张超. 气象学与气候学. 北京: 高等教育出版社,1997.

[20] 孟猛,倪健,张治国. 地理生态学的干燥度指数及其应用评述. 植物生态学报,2004,28(6):853-861.

文章导航

/