灾害风险评估

黑龙江省大风分布特征及风险区划研究

展开
  • 哈尔滨师范大学地理科学学院,哈尔滨150025
陈红(1984-),女,黑龙江佳木斯人,硕士生,主要从事气象灾害风险评估研究。E-mail: chen-hong-1984@163.com

收稿日期: 2010-10-01

  修回日期: 2011-01-01

  网络出版日期: 2011-07-25

基金资助

国家自然科学基金项目(40771195);哈尔滨市科技创新项目(2007RFXXS029)。

Study on the Distribution and Risk Zoning of Strong Winds in Heilongjiang Province

Expand
  • School of Geography Science, Harbin Normal University, Harbin 150025, China

Received date: 2010-10-01

  Revised date: 2011-01-01

  Online published: 2011-07-25

摘要

选取黑龙江省1971-2005 年35 年大风资料,分析了78 个市(县)大风的时空分布特征,运用信息扩散理论的计算方法得出发生不同大风日数的概率风险估计值,并用GIS 技术制成风险图并进行区划。研究表明:①黑龙江省大风20 世纪70、80 年代最多且波动性较大,90 年代至20 世纪初明显减少,并趋于稳定;大风多发在春季,是造成春旱、春季火灾的主要原因。②年总大风日数,高值区多分布在松嫩平原、三江平原,低值区以大兴安岭、伊春、牡丹江地区为主。③以信息扩散理论计算方法得出发生大风为1 d、2 d、3 d、4 d 的概率风险估计值,大风风险高值区在黑龙江省中南部自西向东呈带状分布,北部、中北部、西部及南部为风险低值区。运用信息扩散理论首次实现对黑龙江省不同大风日数进行风险评估,其具有所需资料少,并可实现对市(县)以下地域单元不同灾害的发生风险及损失风险评估的优点。

本文引用格式

张丽娟, 陈红, 高玉宏, 马艳敏, 马骏 . 黑龙江省大风分布特征及风险区划研究[J]. 地理科学进展, 2011 , 30(7) : 899 -905 . DOI: 10.11820/dlkxjz.2011.07.016

Abstract

This paper calculates the risk probability of strong wind by information diffusion theory, draws the risk zoning map by GIS technology, and then analyses the temporal and spatial distribution of strong winds in 78 counties or cities of Heilongjiang Province during 1971-2005. The results are shown as follows. (1) There were fluctuations of strong wind occurrence in Heilongjiang in the 1970s and 1980s. The occurrence of strong winds has been decreased noticeably from the 1990s to the early 21st century. Strong winds occurred mostly in spring, which was the main reason having drought and fire risks. (2) The high values of the number of strong wind days were mainly observed in Songnen plain and Sanjiang plain, and the low values appeared in Da Hinggan, Yichun and Mudanjiang. (3) The strong wind risk probabilities of 1d, 2d, 3d and 4d have been calculated by information diffusion theory. The areas with high risks were distributed in the central-southern parts of Heilongjiang as a zone from west to east, and those with low values were located in the northern, central-northern, western and southern parts. This paper takes the advantages of information diffusion theory, which requires less information and can evaluate the risks and loss risks.

参考文献

[1] 孙绍骋. 灾害评估研究内容与方法探讨. 地理科学进展, 2001, 20(2): 122-127.

[2] 黄大鹏, 刘闯, 彭顺风. 洪涝风险评价与区划研究进展. 地理科学进展, 2007, 26(4): 11-19.

[3] 赵庆良, 许世远, 王军, 等. 沿海城市风暴潮灾害风险评估研究进展. 地理科学进展, 2007, 26(5): 32-38.

[4] 石勇, 许世远, 石纯, 等. 洪水灾害脆弱性研究进展. 地理科学进展, 2009, 28(1): 41-46.

[5] 翟国方. 日本洪水风险管理研究进展及对中国的启示. 地理科学进展, 2010, 29(1): 3-9.

[6] 胡爱军, 李宁, 祝燕德, 等. 论气象灾害综合风险防范模式: 2008 年中国南方低温雨雪冰冻灾害的反思. 地理科学进展, 2010, 29(2): 159-165.

[7] Whiteman C D, Doran J C. The relationship between overlying synoptic-scale flows and wind within a valley. Journal of Applied Meteorology, 1993, 32(11): 1669-1682.

[8] Lynch A H, Cassano E N, Cassano J J. Case studies of high wind events in Barrow, Alaska: Climatological context and development Proeesses. Monthly Weather Review, 2003, 131(4): 719-732.

[9] Lee B E, Wills J. Vulnerability of fully glazed high-rise buildings in tropical cyclones. Journal of Architectural Engineering, 2002, 8(2): 42-48.

[10] Khanduri A C, Morrow G C. Vulnerability of buildings to windstorms and insurance loss estimation. Journal of Wind Engineering and Industrial Aerodynamics, 2003 (91): 455-467.

[11] Li Y, Ellingwood B R. Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment. Engineering Structure, 2006,28 (7): 1009-1018.

[12] Katz R W. Stochastic modeling of hurricane damage. Journal of Applied Meteorology, 2002, 41(7):754-762.

[13] Adrianto L, Matsuda Y. Developing economic vulnerability indices of environmental disasters in small island regions. Environmental Impact Assessment Review, 2002, 22(4): 381-401.

[14] Zeng H C, Talkkari A, Peltola H, et al. A GIS-based decision support system for risk assessment of wind damage in forest management. Environmental Modelling &Software, 2007, 22(9): 1240-1249.

[15] Lekes V, Dandul I. Using airflow modeling and spatial analysis for defining wind damage risk classification( WINDARC). Forest Ecdogy and Management, 2000, 135(1-3): 331-344.

[16] Moore J, Quine C P. A comparison of the relative risk of wind damage to planted forests in Border Forest Park, Great Britain,and the Central North Island, New Zealand. Forest Ecology and Management, 2000, 135(1-3): 345-353.

[17] 姚正毅, 王涛, 陈广庭, 等. 近40a 甘肃河西地区大风日数时空分布特征. 中国沙漠, 2006, 26(1): 65-70.

[18] 李耀辉, 张存杰, 高学杰. 西北地区大风日数的时空分布特征. 中国沙漠, 2004, 24(6): 715-723.

[19] 张润琼, 陈世平, 刘莉娟, 等. 近45a 六盘水大风天气气候特征分析. 中国沙漠, 2009, 29(4): 773-776.

[20] 姚正毅, 王涛, 周俐, 等. 近40 年阿拉善高原大风天气时空分布特征. 干旱区地理, 2006, 29(2): 207-211.

[21] 普布次仁·拉巴, 普布卓玛. 基于GIS我区大风特征分析及预测. 高原气象, 2007, 5: 66-67.

[22] 张核真. 西藏大风分布特征及风灾区域的初步划分. 高原气象, 2006, 6: 39-41.

[23] 吴春英, 孙桂双, 张昱, 等. 1986-2005年抚顺大风特征分析及预测. 气象与环境学报, 2008, 24(5): 42-46.

[24] 徐凤梅, 焦建立, 张艳玲, 等. 近47a 商丘大风气候特征. 气象与环境科学, 2009, 32: 75-77.

[25] 李兰, 周月华, 陈波. 湖北省大风灾害及其风险度. 气象科技, 2009, 37(2): 205-208

[26] 称丛兰, 李青春, 扈海波, 等. 北京地区奥运会间大风灾害的定量评估. 气象科技, 2008, 36(6): 806-810.

[27] 王秋香, 李红军. 新疆近20a 风灾研究. 中国沙漠, 2003, 23(5): 546-548.

[28] 张丽娟, 郑红, 周嘉, 等. 哈尔滨市沙尘暴发生规律与成因分析. 自然灾害学报, 2005, 14(2): 41-46.

[29] 刘悦, 王家鼎. 黄土湿陷性评价中的模糊信息优化处理方法. 西北大学学报, 2000, 30(1): 78-82.

[30] 冯利华. 基于信息扩散理论的气象要素风险分析. 气象科技, 2000,1: 27-29.

[31] 黄崇福. 自然灾害风险评价理论与实践. 北京: 科学出版社, 2005: 180-182.
文章导航

/