北京湿地景观监测与动态演变
收稿日期: 2009-01-01
修回日期: 2010-01-01
网络出版日期: 2010-07-25
基金资助
北京市教育委员会共建项目建设计划 (JD100220648)。
Landscape Monitoring and Dynamic Evolution of Wetland Resources in Beijing
Received date: 2009-01-01
Revised date: 2010-01-01
Online published: 2010-07-25
湿地是地表最重要的景观覆盖类型和生态系统,具有巨大的资源潜力和环境功能。长期以来,由于人类活动影响造成湿地景观的巨大变化,不仅改变了湿地景观原有的功能,而且对湿地环境产生重要影响。本文以北京湿地为研究区域,将马尔科夫过程模型引入到湿地景观格局分析和预测中,采用遥感和GIS相结合的方法,利用1996、2001与2005年Landsat TM影像为信息源,分析了北京湿地景观格局演变过程。研究结果标明:北京地区的湿地资源面积呈现显著退化趋势,湿地面积由1996年的62869.64 hm2减少到2005年的31416.31 hm2;北京湿地斑块趋向于不规则,破碎化程度增强导致湿地易消退,湿地功能难以发挥;在现有的人类作用强度的情况下,北京湿地景观格局可达到一个相对稳定的状态,即天然河流达到10.93%,人工水域占99.17%。研究结果为北京湿地的可持续发展与科学管理提供了依据。
顾丽,王新杰,龚直文,付尧,刘俊 . 北京湿地景观监测与动态演变[J]. 地理科学进展, 2010 , 29(7) : 789 -796 . DOI: 10.11820/dlkxjz.2010.07.003
Wetland, considered as the natural ecosystem and landscape, has great resource potentiality and environmental function. For a long time, the change of wetland landscape pattern has been affected by human activities, which has changed the existing wetland functions, and exerted influence on wetland environment. This paper, took the capital city of Beijing as a case for the study of wetland areas, and used Markov model to analyze the dynamic change and the trend of evolution. Supported by RS and GIS technology, combining the previous researches and numerous field investigations, this paper used Landsat TM images of 1996, 2001 and 2005 as the information source to analysis the process of dynamic evolution. The results showed that Beijing wetland recources were degraded significantly. The area of wetland dropped from 62869.64 hm2 in 1996 to 31416.31 hm2 in 2005. The patches of wetlands tended to be irregular, and the degree of fragmentation was increasing. The transition probability matrices at two primary states (1996 and 2005) were established. Then, the development and the future tendency of wetland landscape patterns were simulated and forecasted with Markov process. Under the existing human effects, Beijing wetland landscape pattern may achieve a relative stable state, in which natural rivers make up 10.93% and artificial waters account for 99.17%. The findings have provided the basis for the sustainable development and the scientific management of Beijing's wetlands.
Key words: Beijing; dynamic evolution; landscape pattern; Marcov model; wetland resource
[1] 蒋卫国, 李京, 李加洪,等. 辽河三角洲湿地生态系统健康评价. 生态学报, 2005, 25(3): 409-141.
[2] Paul A K. Wetland Ecology Principles and Conservation. Cambridge: Cambridge University Press, 2000: 124-238.
[3] Holland M M. Wetlands and environment gradients//Mulamoottil G, Warner B G, McBean E A//Wetland Environment Gradients, Boundaries and Buffers. CRC Press Inc, 1996: 112-131.
[4] Land-Use and Land-Cover Change(LUCC) Implementation Strategy. IGBP Report 48. IHDP Report, 1999, 10: 10-26.
[5] 程乾, 吴秀菊. 杭州西溪国家湿地公园1993年以来景观演变及其驱动力分析. 应用生态学报, 2006, 17(9):1677-1682.
[6] Hess L L, Melack J M, Novo E, et al. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment, 2003, 87(4): 404-428.
[7] Prior H, Johnes P J. Regulation of surface water quality in a Cretaceous Chalk catchment, UK: An assessment of the relative importance of instream and wetland processes. Science of the Total Envioronment, 2002, 282: 159-174.
[8] Rapport D J, Costanza R, McMichael A J. Assessing ecosystem health.Trend in Ecology & Evolution, 1998,13(10): 397-402.
[9] Vadineanu A, Cristofor S. Biodiversity changes in the lower Danube river system//Gopal B, Junk W J, Davis J A.Biodiversity in Wetlands: Assessment, Function and Conservation(eds). Leiden: Backhugs Publishers, 2001: 29-65.
[10] Saunders D A. Biological consequence of ecosystem fragmentation. A review conservation. Biology, 1991, 5(1): 18-32.
[11] Hulst R. On the dynamics of vegetation: Markov chains as models of succession. Vegetation, 1979, 40(1): 3-14.
[12] Moreno-Mateos D, Mander U. Relationships between landscape pattern, wetland characteristics, and water Quality in agricultural catchments. Joural of Enviormental Quality, 2008, 37(6): 2170-2180.
[13] 宗秀影, 刘高焕, 乔玉良. 黄河三角洲湿地景观格局动态变化分析. 地理信息科学学报, 2009, 11(1): 91-97.
[14] Royh Y, Mark C. Quantifying landscape structure: a review of landscape indices and their application to forested land-scapes. Progress in Physical Geograph, 1996, 20(4): 418-445.
[15] 白军红, 欧阳华, 崔保山, 等. 近40年来若尔盖高原高寒湿地景观格局变化. 生态学报, 2008, 28(5): 2245-2252.
[16] Tagil, S. Quantifying the change detection of the Uluabat wetland, Turkey, by use of landsat images. Ekoloji, 2007, 16(4): 9-20.
[17] 韩海辉, 杨太保, 王艺霖. 近30年青海贵南县土地利用与景观格局变化. 地理科学进展, 2009, 28(2): 207-215.
[18] 周昕薇, 宫辉力, 赵文吉, 等. 北京地区湿地资源动态监测与分析. 地理学报, 2006, 61(6): 654-662.
[19] 张志峰, 赵文吉, 贾萍, 等. 北京湿地分析与监测. 地球信息科学, 2004, 6(1): 53-56.
[20] 谢志茹, 罗德力, 张景春, 等. 基于RS与GIS技术的北京城市公园湿地景观格局研究. 国土资源遥感, 2004, 61(3): 61-64.
[21] 蔡博峰, 卞有生. 北京市妫水河流域景观生态学分析. 环境污染与防治, 2006, 28(5): 373-376.
[22] 王颖, 宫辉力, 赵文吉, 等. 北京野鸭湖湿地资源变化特征. 地理学报, 2005, 60(4): 656-664.
[23] 湿地国际——中国项目办事处. 湿地公约宣传册, 1999.
[24] Wilson P A. Rule-based classification of water in Landsat MSS images using the variance filter. Photogrammetric Engineering & Remote Sensing, 1997, 63(5): 485-491.
[25] Forman R T T, Godron M. Landscape Ecology. New York: Wiley & Sons, 1986: 188-210.
[26] 李加, 赵寒冰, 曹云刚, 等. 辽河三角洲湿地景观空间格局变化分析. 城市环境与城市生态, 2006, 16(2): 5-7.
[27] 宁龙梅, 王学雷, 胡望斌. 利用马尔科夫过程模拟和预测武汉市湿地景观的动态演变. 华中师范大学学报自然科学版, 2004, 38(2): 255-258.
[28] 刘红玉, 吕宪国, 张世奎. 三江平原流域湿地景观多样性及其50年变化研究. 生态学报, 2004, 24(7): 1472-1478.
[29] 钟凯文,孙彩歌,解靓. 基于GIS的广州市土地利用遥感动态监测与变化分析. 地球信息科学学报, 2009, 11(1): 111-116.
[30] 李颖, 田竹君, 叶宝莹. 嫩江下游沼泽湿地变化的驱动力分析. 地理科学, 2003, 23(6): 686-691.
[31] Zhao R F, Chen Y N, Zhou H R, et al. Assessment of wetland fragmentation in the Tarim River basin, western China, Environmental Geology, 2009, 57(2): 455-464.
[32] Qiu P F, Wu N, Luo P, et al. Analysis of dynamics and driving factors of wetland landscape in Zoige, eastern Qinghai-Tibetan Plateau. Journal of Mountain Science, 2009, 6(1): 42-55.
/
〈 | 〉 |