气候变化与环境

基于TVDI的藏北地区土壤湿度空间格局

展开
  • 1. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室, 北京 100101;
    2. 中国科学院研究生院, 北京 100049;
    3. 香港中文大学地理与资源管理系, 香港;
    4. 中国农业科学院农业环境与可持续发展研究所, 100081
宋春桥(1986-),男,湖南衡阳人,硕士研究生,主要从事生态环境遥感、遥感与GIS应用等研究。E-mail: chunqiao_song@163.com

收稿日期: 2011-01-01

  修回日期: 2011-04-01

  网络出版日期: 2011-05-25

基金资助

国家自然科学基金项目(40971132)。

The Spatial Pattern of Soil Moisture in Northern Tibet Based on TVDI Method

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, State Key Lab of Resources and Environmental Information System, Chinese Academy of Sciences, Beijing, 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing, 100049, China;
    3. The Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong;
    4. Institute of Environment and Sustainable Development in Agriculture;Chinese Academy of Agricultural Sciences, Beijing, 100081, China

Received date: 2011-01-01

  Revised date: 2011-04-01

  Online published: 2011-05-25

摘要

利用2010 年DOY 209 期的Terra/MODIS 16 d 合成的植被指数(EVI)产品数据MOD13 A2 和8 d 天合成的地表温度(LST)产品数据MOD11 A2,构建LST- EVI特征空间,从而得到了条件温度植被干旱指数TVDI反映的藏北土壤湿度空间分布图。结合野外同步土壤表层水含量测试数据,二者表现出较好的相关程度,并通过0.05 水平的显著性检验。对藏北地区土壤湿度的空间格局和分异规律分析,研究结果表明:①藏北全区TVDI值呈正态分布,东部地区偏湿,中部地区多数为正常湿度,而西部TVDI直方图分布形状与全区相似,但偏旱;②藏北地区不同气候区划内土壤湿度分异较大,那曲高山谷地亚寒带半湿润区土壤湿度最高,其空间变异也最强烈,青南高原亚寒带半干旱区土壤干旱最严重;③研究区内土壤湿度空间分布受海拔影响较为明显,在海拔4500 m以下的地区土壤湿度随海拔升高而降低,此后,土壤湿度随着海拔升高而升高。

本文引用格式

宋春桥, 游松财, 刘高焕, 柯灵红, 钟新科 . 基于TVDI的藏北地区土壤湿度空间格局[J]. 地理科学进展, 2011 , 30(5) : 569 -576 . DOI: 10.11820/dlkxjz.2011.05.008

Abstract

Using enhanced vegetation index (EVI) and land surface temperature (LST) dataset derived from TERRA/MODIS synthetic products MOD13 A2 (16-day composite, DOY 209 in 2010) and MOD11 A2 (8-day composite, DOY 209 and 217 in 2010), the LST-EVI two-dimensional characteristic space was constructed, and then TVDI (temperature-vegetation drought index) was extracted to indicate the top-soil moisture of northern Tibet. Furthermore, the simulated soil moisture was verified by synchronously measured data in the field. The two groups of data showed a strong relationship and the correlation coefficient got through the 0.05 significance level. Then the spatial pattern and heterogeneity of soil moisture in the studied area were further analyzed, and the results showed: (1) the TVDI values of pixels in northern Tibet proved to have a statistically normal distribution, and the soil moisture in eastern region, central region and western region respectively showed wet, normal and dry situations; (2) evident difference in soil moisture existed in different climatic zones, and the soil moisture in the mountain and valley-in-valley structured Nagqu sub-arctic and sub-humid zone was the highest and that in southern Qinghai sub arctic and semiarid zone was the lowest; (3) the spatial distribution of soil moisture in the area was obviously affected by the altitude. The soil moisture in the region below 4500 m showed a negative correlation with the altitude and the correlation was positive in the region higher than 4500 m.

参考文献

[1] 吴险峰, 刘昌明. 流域水文模型研究的若干进展. 地理科学进展, 2002, 21(4): 341-348.



[2] 刘志明, 张柏, 晏明, 等. 土壤水分与干旱遥感研究的进展与趋势. 地球科学进展, 2003, 18(4): 576-583.



[3] 刘昌明, 孙睿. 水循环的生态学方面: 土壤-植被-大气系统水分能量平衡研究进展. 水科学进展, 1999, 10(3):251-259.



[4] 邓辉, 周清波. 土壤水分遥感监测方法进展. 中国农业资源与区划, 2004, 25(3): 46-49.



[5] 余涛, 田国良. 热惯量法在监测土壤表层水分变化中的研究. 遥感学报, 1997, 1(1): 24-32.



[6] 隋洪志, 田国良, 李付琴. 农田蒸散双层模型及其在干旱遥感监测中的应用. 遥感学报, 1997, 1(3): 220-224.



[7] 夏虹, 武建军, 刘雅妮, 等. 中国用遥感方法进行干旱监测的研究进展. 遥感信息, 2005(1): 55-57



[8] 孙丽, 陈焕伟, 赵立军. 遥感监测旱情的研究进展. 农业环境科学学报, 2004, 23(1): 202-206.



[9] Nemani R R, Pierce L, Running S, et al. Developing satellitederived estimates of surface moisture status. Journalof Applied Meteorology, 1993, 32(3): 548-557.



[10] Price J C. Using spatial context in satellite data to infer regionalscale evapotranspiration. IEEE Transactions onGeoscience and Remote Sensing, 1990, 28(5): 940-948.



[11] Carlson T N, Gillies R R, Perry E M. A method to makeuse of thermal infrared temperature and NDVI measurementsto infer surface soil water content and fractionalvegetaional cover. Remote Sensing Review, 1994, 9(1-2):45-59.



[12] Sandholt I, Rasmussen K, Andersen J. A simple interpretationof the surface temperature-vegetation index spacefor assessment of surface moisture status. Remote Sensingof Environment. 2002, 79(2-3): 213-224.



[13] Wan Z M, Wang P X, Li X W. Using MODIS land surfacetemperature and Normalized Difference VegetationIndex products for monitoring drought in the southernGreat Plains. USA. International Journal of Remote Sensing,2003, 25(1): 1-12.



[14] Gillies R R, Carlson T N, KustasW P. A Verification ofthe 'riangle' method for obtaining surface soil water contentand energy fluxes from remote measurements of theNormalized Difference Vegetation Index (NDVI) and surfaceradiant temperature. International Journal of RemoteSensing, 1997, 18(15): 3145-3166.



[15] Goetz S J. Multi-sensor analysis of NDVI, surface temperatureand biophysical variables at a mixed grasslandsite. International Journal of Remote Sensing, 1997, 18(1): 71-94.



[16] Goward S N , Xue Y, Czajkow ski K P. Evaluating landsurface moisture conditions from the remotely sensedtemperature/vegetation index measurements: An explorationwith the simplified simple biosphere model. RemoteSensing of Environment, 2002, 79(223): 225 - 242.



[17] 齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情监测研究. 遥感学报, 2003, 7(5): 420-427.



[18] 李正国, 王仰麟, 吴健生, 等. 基于植被/温度特征的黄土高原地表水分季节变化. 生态学报, 2007, 27(11): 4563-4575.



[19] 杨曦, 武建军, 闫峰, 等. 基于地表温度-植被指数特征空间的区域土壤干湿状况. 生态学报, 2009, 29(3):1205-1216.



[20] 甘肃草原生态研究所草地资源室和西藏自治区那曲地区畜牧局. 西藏那曲地区草地畜牧业资源. 兰州: 甘肃科学技术出版社, 1991: 12-68.



[21] 闫峰, 王艳娇. 基于Ts-EVI 特征空间的土壤水分估算.生态学报, 2009, 29(9): 4884-4891.



[22] 刘庆生, 李集生, 刘高焕, 等. Hydra 土壤测试仪测定现代黄河三角洲的土壤水分与盐分试验. 现代科技,2009, 15(1): 161-162.



[23] 郑景云, 尹云鹤, 李炳元. 中国气候区划新方案. 地理学报, 2010, 65(1): 3-12.
文章导航

/