2011 , Vol. 30 >Issue 7: 805 - 810

Priestley-Taylor公式的改进及其在互补蒸散模型中的应用

• 1. 中国科学院地理科学与资源研究所，北京100101;
2. 河海大学水文院，南京210098

修回日期: 2011-06-01

网络出版日期: 2011-07-25

Improved Priestley-Taylor Method and Its Application in Complementary Relationship Evapotranspiration Model

Expand
• 1. Institute of Geographic Sciences National Resources Research, CAS, Beijing 100101, China;
2. Institute of Hydrological Hehai University, Nanjing 210098, China

Revised date: 2011-06-01

Online published: 2011-07-25

摘要

Priestley-Taylor 公式是无平流的假设条件下提出的，而实际情况很难满足。为了消除基本假设所带来的计算误差，原公式中引入修正系数α。但大量研究表明，修正系数α 具有很大的时空变异性，取值具有很大的不确定性。本文尝试直接引入平流项的方法来反映平流的影响作用。通过在乌江鸭池河流域进行实例验证分析，结果表明该方法具有一定的合理性，能够为冬季蒸散发的计算提供最小能量保证。相比原有的修正系数法，蒸散发的计算精度得到有效提高。特别是原有公式计算出现的冬季偏小、夏季偏大的情况得到了有效的改善。

Abstract

Priestley-Taylor method is developed under the condition of non advection water vapour transport, however, this assumption is hardly satisfied in reality. Some researches introduced the parameter in order to eliminate the error brought by the non-advection assumption. According to many researches, the value of parameter has some uncertainty. This paper tries to introduce an advection coefficient to reflect the influence of advection on evaporation. The case analyses suggest that this method could provide the minimum energy for calculating evaporation in winter. Compared with the original formula, the calculation accuracy of evaporation has been effectively improved, especially in winter and summer.

参考文献

[1] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. MonthlyWeather Review, 1972, 100(2): 81-92.

[2] 邱新法, 曾燕, 缪启龙, 等. 用常规气象资料计算陆面年实际蒸散发量. 中国科学, 2003, 33(33): 81-288.

[3] 刘绍民, 孙睿, 孙中平, 等. 基于互补相关原理的区域蒸散量估算模型比较. 地理学报, 2004, 59(3): 331-340.

[4] 曾燕, 邱新法, 刘昌明, 等. 1960-2000 年中国蒸发皿蒸发量的气候变化特征. 水科学进展, 2005, 18(3): 311-318.

[5] 马耀明. 非均匀陆面上区域蒸发(散)研究概况. 高原气象, 1997, 16(4): 446-452．

[6] Xu C Y, Singh V P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. Journal of Hydrology, 2005, 308(1-4):105-121.

[7] Brutsaert W, Chen D. Desorption and the two stages of dying of natural tallgrass prairie. Water Resources Research, 1995,31(5): 1305-1313.

[8] Hobbins M T, Ramirez J A, Brown T C. The complementary relationship in estimation of regional evapotranspiration: An enhanced advection-aridity model. Water Resour Res, 2001, 37(5): 1389-1403.

[9] 莫兴国. 引入平流影响的蒸散发估算. 生态农业研究, 1995, 12(3): 49-53.

[10] 杨汉波, 杨大文, 等. 蒸发互补关系在不同时间尺度上的变化规律及其机理. 中国科学: E 辑, 2009, 39(2): 333-340.

[11] 杨汉波, 杨大文, 雷志栋, 等. 蒸发互补关系的区域变异性. 清华大学学报: 自然科学版, 2008, 48(9): 33-36.

[12] 莫兴国. 用平流-干旱模型估算麦田潜热及平流. 中国农业气象, 1995, 16(6): 1-4.

[13] Bouchet R J. Evapotranspiration reele at potentielle, signification climatique. General Assembly Berkeley, Int.Ass. Sci.Hydrol. Gentbrugge, Belgium, Pub1, 1963, 62: 134-142.

[14] Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration.Water Resource Research, 1979, 15(2): 443-449.

[15] Morton F I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 1983, 66(1-4): l-76.

[16] Granger R J. An examination of the concept of potentia1. Journal of Hydrology, 1989, 11(1): 9-19.

[17] Granger R J, Gray D M. Evaporation from natural no-saturated surfaces. Journal of Hydrology, 1989, 111(1-4): 21-29.

[18] 熊立华, 郭生练, 付小平, 等. 两参数月水量平衡的研制和应用. 水科学进展, 1996, 7(增刊): 80-86.
Options

/

 〈 〉