生态环境

草地生态系统土壤微生物量及其影响因子研究进展

展开
  • 1. 中国科学院地理科学与资源研究所, 北京100101;
    2. 中国科学院研究生院, 北京100049;
    3. 江西省水土保持科学研究所, 南昌330029
何亚婷|女|陕西宝鸡人|博士研究生。主要从事草地土壤微生物学研究

收稿日期: 2010-03-01

  修回日期: 2010-04-01

  网络出版日期: 2010-11-25

基金资助

国家自然科学基金重点项目( 40730105);国家自然科学基金项目( 40973057);国家科技攻关计划项目(2007BAC03A11-02)

Advances in Researches on Soil Microbial Biomass of Grassland Ecosystems and Its Influencing Factors

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Jiangxi Provincial Research Institute for Soil andWater Conservation, Nanchang 330029, China

Received date: 2010-03-01

  Revised date: 2010-04-01

  Online published: 2010-11-25

摘要

草地作为陆地生态系统的主体类型之一,受到人类活动和全球变化的广泛影响。这些因素在直接影响草地生态系统地上植被生长和群落动态的同时,还直接或间接地影响着草地生态系统的各种地下生态过程。土壤微生物是指示草地生态系统各地下生态与生物地球化学过程对外部干扰响应的良好指标,其中微生物量是土壤微生物活性和大小度量的重要参数,是土壤有机质中最活跃的组分之一,能够敏感地反映土壤生态系统水平的微小变化,在各种土壤生化过程研究中具有非常重要的意义。研究综述了自然因子(土壤温度、土壤湿度、pH值)、人为干扰(放牧、开垦、施肥)和全球变化(大气CO2浓度升高、气候变暖)对草地生态系统土壤微生物量影响的研究进展,并指出目前的研究由于基础薄弱、研究样地间的差异以及各研究处理间的差异,土壤微生物量对各种干扰的响应仍存在很大的不确定性,在今后的研究中应加强长期性的野外定位试验研究、多因子的综合控制实验研究以及N输入对微生物量影响的研究等,并进一步完善和发展测量微生物量的新技术和新方法。

本文引用格式

何亚婷, 董云社, 齐玉春, 肖胜生, 刘欣超 . 草地生态系统土壤微生物量及其影响因子研究进展[J]. 地理科学进展, 2010 , 29(11) : 1350 -1359 . DOI: 10.11820/dlkxjz.2010.11.020

Abstract

As one of the main terrestrial ecosystems, grassland ecosystem has suffered the extensive effects from human activity and global change. These effects not only have an influence on aboveground process such as plant growth and plant community dynamics, but also exert a profound influence on multiple belowground processes simultaneously. Therefore, soil microorganism may be a good indicator to understand the response of the aforementioned belowground biological and biogeochemical processes to the changes of outside disturbances. Soil microbial biomass is an important parameter to character the soil microbe activity and size. Meanwhile, it is also the most active component of the soil organic carbon pool, and plays an important role in indicating the minute changes in soil system and is of great significance in the research of soil bio-chemical processes. Here the effects of natural factors (soil temperature, soil moisture and soil pH), human disturbances (grazing, grassland reclamation and fertilization) and global changes (elevated CO2 and global warming) on soil microbial biomass of grassland ecosystem are presented. So far, the researches about the effects of natural factors and external disturbance on soil microbial biomass still have a lot of uncertainties, so long-term field studies, multiple factors controlled experimentation and nitrogen input studies should be strengthened in the future studies. Besides, new technologies and methods to determine soil microbial biomass are also expected to be developed.

参考文献


[1] 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量及其应 用. 北京: 气象出版社, 2006: 54-61.

[2] 陈国潮, 何振立, 黄昌勇. 土壤微生物生物量C周转及其 研究. 土壤学报, 2002, 39(2): 153-159.

[3] Compton J E, Watrud L S, Porteous L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management, 2004, 196(1): 143-158.

[4] Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology, 2007, 36(2-3): 84-91.

[5] Boxman AW, Blanck K, Brandrud T E, et al. Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecology and Management, 1998, 101(1-3): 65-79.

[6] Fisk M C, Fahey T J. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry, 2001, 53(2): 201-223.

[7] Wang Q K, Wang S L, Liu Y X. Responses to N and P fertilization in a young Eucalyptus dunnii plantation: Microbial properties, enzyme activities and dissolved organic matter. Applied Soil Ecology, 2008, 40(3): 484-490.

[8] Joergensen R G, Potthoff M. Microbial reaction in activity, biomass, and community structure after long-term continuous mixing of a grassland soil. Soil Biology & Biochemistry, 2005, 37(7): 1249-1258.

[9] Johnson D, Leake J R, Read D J. Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonization in upland grassland. Plant and Soil, 2005, 271(1-2): 157-164.

[10] 黄靖宇, 宋长春, 宋艳宁, 等. 湿地垦殖对土壤微生物量 及土壤溶解有机碳、氮的影响. 环境科学, 2008, 29(5): 1380-1387.

[11] Zhang W J, Parker K M, Luo Y Q, et al. Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 2005, 11(2): 266-277.

[12] Potthoff M, Steenwerth K L, Jackson L E, et al. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology & Biochemistry, 2006, 38(7): 1851-1860.

[13] 齐玉春, 董云社, 耿元波, 等. 我国草地生态系统碳循环 研究进展. 地理科学进展, 2003, 22(4): 342-352.

[14] 姚拓, 马丽萍, 张德罡. 我国草地土壤微生物生态研究进 展及浅评. 草业科学, 2005, 22(11): 1-7.

[15] 谷雪景, 赵吉, 王娟. 内蒙古典型草原土壤微生物生物量 研究. 农业环境科学学报, 2007, 26(4): 1444-1448.

[16] 郭继勋, 祝延成, 马文明, 等. 东北羊草草原土壤微生物 与生态环境的关系. 草地学报, 1996, 4(4): 240-245.

[17] 王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物 数量及微生物生物量的特征. 生态学杂志, 2007, 26 (7): 1002-1008.

[18] 杨成德, 龙瑞军, 陈秀蓉, 等. 东祁连山高寒草甸土壤微 生物量及其与土壤物理因子相关性特征. 草业学报, 2007, 16(4): 62-68.

[19] 吕秀华. 东北羊草草原不同生境土壤微生物生物与土壤 理化性质关系研究
[D]. 长春: 东北师范大学, 2003: 15-18.

[20] 陈珊, 张常钟, 刘东波, 等. 东北羊草草原土壤微生物生 物量的季节变化及其与土壤生境的关系. 生态学报, 1995, 15(1): 91-94.

[21] Alvarez R, Santanatoglia O J , Garcia R. Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems. Biology and Fertility of Soils, 1995, 19(2-3): 227-230.

[22] Garcia F O, Rice C W. Microbial biomass dynamics in tallgrass prairie. Soil Science Society of America Journal, 1994, 58(3): 816-823.

[23] 赵先丽, 程海涛, 吕国红, 等. 土壤微生物生物量研究进 展. 气象与环境学报, 2006, 22(4): 95-99.

[24] Contin M, Corcimaru S, Nobili M De, et al. Temperature changes and the ATP concentration of the soil microbial biomass. Soil Biology & Biochemistry, 2000, 32(8-9): 1219-1225.

[25] Killham K. Soil Ecology. Cambridge: Cambridge University Press, 1994: 13-14.

[26] 王慧春, 赵修堂, 王启兰. 青海高寒草甸不同植被土壤微 生物生物量的测定. 青海草业, 2006, 15(4): 2-5.

[27] 吴建国, 艾丽. 祁连山3 种典型生态系统土壤微生物活 性和生物量碳氮含量. 植物生态学报, 2008, 32(2): 465-476.

[28] 张崇邦, 刘士山, 杨靖春. 东北羊草草原环境因素对微生 物生物量影响的灰色分析. 中国草地, 1996, 18(1): 10-14.

[29] Rosacker L L, Kieft T L. Biomass and adenylate energy charge of a grassland soil during drying. Soil Biology & Biochemistry, 1990, 22(8): 1121-1127.

[30] Xiang S R, Doyle A, Holden P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology & Biochemistry, 2008, 40(9): 2281-2289.

[31] Scheu S, Parkinson D. Changes in bacterial and fungal bio-volume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Biology & Biochemistry, 1994, 26(11): 1515 -1525.

[32] Wu J, Brookes P C. The proportional mineralization of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology & Biochemistry, 2005, 37(3): 507-515.

[33] Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews of the Cambridge Philosophical Society, 1992, 67(3): 321-358.

[34] 康健. 贺兰山西坡不同草地类型土壤微生物碳-氮特征
[D]. 兰州: 兰州大学, 2006: 26-28.

[35] Bardgett R D, Jones A C, Jones D L, et al. Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology & Biochemistry, 2001, 33(12-13): 1653-1664.

[36] Pietri J C A, Brookes P C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology & Biochemistry,2008, 40(7): 1856-1861.

[37] Wardle D A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biology & Biochemistry, 1998, 30(13): 1627-1637.

[38] Chen G C, He Z L, Wang Y J. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soil. Pedosphere, 2004, 14(1): 9-15.

[39] Dakhah M, Gifford G F. Influence of vegetation, rock cover and trampling on infiltration rates and sediment production. Water Resource Bul1, 1980, l6(6): 979-986.

[40] Krzic M, Broersma K, Thompson D J, et al. Soil properties and species diversity of grazed crested wheatgrass and native rangelands. Range Management, 2000, 53(3): 353-358.

[41] 马秀枝, 王艳芬, 汪诗平, 等. 放牧对内蒙古锡林河流域 草原土壤碳组分的影响. 植物生态学报, 2005, 29(4): 569-576.

[42] Holt J A. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Applied Soil Ecology, 1997, 5(2): 143-149.

[43] 王启兰, 王长庭, 杜岩功, 等. 放牧对高寒嵩草草甸土壤 微生物量碳的影响及其与土壤环境的关系. 草业学报, 2008,17(2): 39-46.

[44] Shrestha G, Stahl P D. Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion. Agriculture, Ecosystems and Environment. 2008, 125(1-4): 173-181.

[45] Raiesi F, Asadi E. Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology Fertility of Soils, 2006, 43(1): 76-82.

[46] Northup B K, Brown J R, Holt J A. Grazing impacts on the spatial distribution of soil microbial biomass around tussock grasses in a tropical grassland. Applied Soil Ecology, 1999, 13(3): 259-270.

[47] 张蕴薇, 韩建国, 韩永伟, 等. 不同放牧强度下人工草地 土壤微生物量碳、氮的含量. 草地学报, 2003, 11(4): 343-346.

[48] 张蕴薇. 放牧强度对土壤物理性质的影响. 草地学报, 2002, 10(1): 73-75.

[49] Wang K H, McSorleya R, Bohlenb P, et al. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures. Soil Biology & Biochemistry, 2006, 38(7): 1956-1965.

[50] Bardgett R D, Hobbs P J, Frosteg?rd ?sa. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22(3): 261-264.

[51] Kieft T L. Grazing and plant-canopy effects on semiarid soil microbial biomass and respiration. Biology Fertility of Soils, 1994, 18(2): 155-162.

[52] Moussa A S, Rensburg L A, Kellner K, et al. Soil microbial biomass in semi-arid communal sandy rangelands in the Western Bophrima district, South Africa. Applied Ecology and Environmental Research, 2007, 5(1): 43-56.

[53] Milchunas D G, Lauenroth W K. A quantitative assessment of the effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs. 1993, 63(4): 327-366.

[54] 高英志, 韩兴国, 汪诗平. 放牧对草原土壤的影响. 生态 学报, 2004, 24(4): 790-797.

[55] 李凌浩. 土地利用变化对草原生态系统土壤碳贮量的影 响. 植物生态学报,1998, 22(4): 300-302.

[56] Lal R, Kimele J, Follett R. Land use and soil C pool in terrestrial ecosystem//Stewart B A. Management of Carbon Sequestration in Soil. Boca Ration: CRC Press, Fla, USA, 1998: 1-10.

[57] 樊江文, 钟华平, 员旭疆. 50 年来我国草地开垦状况及其 生态影响. 中国草地, 2002, 24(5): 69-72.

[58] Dvidson E A, Ackerman I L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 1993, 20(3): 181-l98.

[59] 平立凤, 窦森, 张晋京, 等. 草原及开垦后土壤有机质性 质研究. 应用生态学报, 2004, 15(5): 824-826.

[60] 王百群, 苏以荣, 吴金水. 开垦草地对土壤有机碳库构成与来源的效应. 核农学报, 2007, 21(6): 618-622.

[61] Jones M B, Donnelly A. Carbon sequestration in temperate grassland ecosystem and the influence of management, climate and elevated CO2. New Phytologist, 2004, 164(3): 423-439.

[62] Hatch D J, Lovell R D, Antil R S, et al. Nitrogen mineralization and microbial activity in permanent pastures amended with nitrogen fertilizer or dung. Biology Fertility of Soils, 2000, 30(4): 288-293.

[63] Lovell R D, Hatch D J. Stimulation of microbial activity following spring application of nitrogen. Soil Biology & Biochemistry, 1998, 26(1): 28-30.

[64] Dijkstra F A, Hobbie S E, Reich P B, et al. Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant and Soil, 2005, 272(1-2): 41-52.

[65] Liu W X, Xu W H, Han Y, et al. Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe. Biology Fertility of Soils, 2007, 44(2): 259-268.

[66] Lovell R D, Jarvis S C, Bardgett R D. Soil microbial biomass and activity in long-term grassland: Effects of management changes. Soil Biology & Biochemistry, 1995, 27 (7): 969-975.

[67] Wallenstein M D, McNulty S, Fernandez I J, et al. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management, 2006, 222(1-3): 459-468.

[68] Tietema A. Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. Forest Ecology and Management, 1998, 101(1-3): 29-36.

[69] Hopkins D W, Shiel R S. Size and activity of soil microbial communities in long-term experimental grassland plots treated with manure and inorganic fertilizers. Biological Fertility of Soils, 1996, 22(1-2): 66-70.

[70] DeForest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America, 2004, 68(1): 132-138.

[71] Zhang N L, Wan S Q, Li L H, et al. Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China. Plant Soil, 2008, 311(1-2): 19-28.

[72] 张彦东, 孙志虎, 沈有信. 施肥对金沙江干热河谷退化草 地土壤微生物的影响. 水土保持学报, 2005, 19(2): 88-91.

[73] Zhang Q S, Zak J C. Effects of water and nitrogen amendment on soil microbial biomass and fine root production in a semi-arid environment in west Texas. Soil Biology & Biochemistry, 1998, 30(1): 39-45.

[74] Lovell R D, Jarvis S C. Effect of cattle dung on soil microbial biomass C and N in a permanent treatments stored under controlled conditions. Soil Biology & Biochemistry, 1996, 28(3): 291-299.

[75] Johnson D, Leake J R, Lee J A, et al. Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands. Environmental Pollution, 1998, 103(2-3): 239-250.

[76] IPCC. Climate Change 2001. The Scientific Basis// Houghton J T, Ding Y, Griggs D J, et al. The Carbon Cycle and Atmospheric Carbon Dioxide. Cambridge: Cambridge University Press, 2001: 185-237.

[77] Bruce K D, Jones T H, Bezemer T M, et al. The effect of elevated atmospheric carbon dioxide levels on soil bacterial communities. Global Change Biology, 2000, 6(4): 427-434.

[78] Drissner D, Blum H, Tscherko D, et al. Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. European Journal of Soil Science, 2007, 58(1): 260-269.

[79] Kandeler E, Mosier A R, Morgan J A, et al. Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biology & Biochemistry, 2006, 38(8): 2448-2460.

[80] Rice C W, Garcia F O, Hampton C O, et al. Soil microbial response in tallgrass prairie to elevated CO2. Plant and Soil, 1994, 165(1): 67-74.

[81] Williams M A, Rice C W, Owensby C E. Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant and Soil, 2000, 227(1-2): 127-137.

[82] K?rner C, Diemer M, Sch?ppi B, et al. The responses of alpine grassland to four seasons of CO2 enrichment: A synthesis. Acta Oecologica, 1997, 18(3): 165-175.

[83] 牛淑丽, 韩兴国, 马克平, 等. 全球变暖与陆地生态系统 研究中的野外增温装置. 植物生态学报, 2007, 31(2): 262-271.

[84] Belay-Tedla A, Zhou X H, So B, et al. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biology & Biochemistry, 2009, 41(1): 110-116.

[85] Liu W X, Zhang Z, Wan S Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 2009, 15(1): 184-195.

[86] 罗艳. 土壤微生物对大气CO2浓度升高的响应. 生态环 境, 2003, 12(3): 357-360.

[87] Oijen M V, Schapendonk A H C M, Jansen M J H, et al. Do open-top chambers overestimate the effects of rising CO2 on plants? An analysis using spring wheat. Global Change Biology, 1999, 5(4): 411-421.

文章导航

/