水系统研究

水文系统不确定性分析方法及应用研究进展

展开
  • 北京师范大学环境学院水沙科学教育部重点实验室,北京 100875
王育礼,男,博士研究生,研究方向为流域水文过程。E-mail: hope7080@163.com

收稿日期: 2011-03-01

  修回日期: 2011-06-01

  网络出版日期: 2011-09-25

基金资助

国家科技支撑计划项目(2007BAC18B01)。

Progress in the Research and Application of Uncertainty Analysis Methods for Hydrological System

Expand
  • Key Laboratory ofWater and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China

Received date: 2011-03-01

  Revised date: 2011-06-01

  Online published: 2011-09-25

摘要

水文系统是一个复杂的系统,包含了很多不确定性因素,增加了精确模拟和预测水文过程的困难。为了提高计算结果的可靠性,水文系统的不确定性分析已成为当前研究的热点。本文对水文系统不确定性分析方法及应用研究进展进行了分类综述,介绍了它们的数学原理、操作程序和应用现状,并对值得进一步研究的问题进行了展望,指出加强水文过程机理研究、在水文循环过程更多环节上拓宽不确定性研究、以及将多种不确定性分析方法进行综合是未来的研究趋势。

本文引用格式

王育礼, 王烜, 杨志峰, 谭雅懿 . 水文系统不确定性分析方法及应用研究进展[J]. 地理科学进展, 2011 , 30(9) : 1167 -1172 . DOI: 10.11820/dlkxjz.2011.09.012

Abstract

Hydrological system is a complex system with many uncertain factors. These factors are not conductive to the accurate simulation and prediction of hydrological processes. Thus more and more people focus on the uncertainty analysis methods for the hydrological systems to improve the reliability of calculations. In this paper, we summarized the researches and the applications of the uncertainty analysis methods for hydrological systems. Based on the review, we introduced their mathematical principles, operational procedures and status of applications. Furthermore, the key tasks in the future were put forward, including uncertainty analysis of the mechanism of hydrological circulation and hydrological processes in combination of various methods.

参考文献

[1] Christiaens J, Feyen J. Constraining soil hydraulic parameterand output uncertainty of the distributed hydrologicalMIKE SHE model using the GLUE framework. HydrologicalProcesses, 2002, 16(2): 373-391.

[2] Gallart F, Latron J, Llorens P, et al. Using internal catchmentinformation to reduce the uncertainty of dischargeand baseflow predictions. Advances in Water Resources,2007, 30(4): 808-823.

[3] Ascogh J C, Maier H R, Ravalico J K, et al. Future researchchallenges for incorporation of uncertainty in environmentaland ecological decision-making. EcologicalModelling, 2008, 219(3-4): 383-399.

[4] 尹雄锐, 夏军, 张翔, 等. 水文模拟与预测中的不确定性研究现状与展望. 水力发电, 2006, 32(10): 27-31.

[5] 武震, 张世强, 丁永建. 水文系统模拟不确定性研究进展. 中国沙漠, 2007, 27(5): 890-896.

[6] Montanati A. What do we mean by‘uncertainty'? Theneed for a consistent wording about uncertainty assessmentin hydrology. Hydrological Processes, 2007, 21(6):841-845.

[7] 刘苏峡, 夏军, 莫兴国. 无资料流域水文预报(PUB计划)研究进展. 水利水电技术, 2005, 36(2): 9-12.

[8] Gallart F, Latron J, Llorens P, et al. Upscaling discrete internalobservations for obtaining catchment-averagedTOPMODEL parameters in a small mediterranean mountainbasin. Physics and Chemistry of the Earth, 2008, 33(17-18): 1090-1094.

[9] Smerdon B D, Allen D M, Grasby S E, et al. An approachfor predicting groundwater recharge in mountainous watersheds.Journal of Hydrology, 2009, 365(2-4): 156-172.

[10] 王文圣, 金菊良, 李跃清. 水文随机模拟进展. 水科学进展, 2007, 18(5): 768-775.

[11] Haan C J. Statistical Methods in Hydrology. Ames: the IowaState University Press, 1977: 267.

[12] Heemink AW, Van Den Boogaard H F P. Identification ofstochastic dispersion models//Hipel K W. Stochastic andStatistical Methods in Hydrology and Environmental Engineering(Volume 2): Stochastic and Statistical Modellingwith Groundwater and Surface Water Applications.London: Kluwer Academic Publishers, 1994: 267.

[13] Krzysztofowicz R, Maraanzano C J. Bayesian system forprobabilistic stage transition forecasting. Journal of Hydrology,2004, 229(1-2): 15-44.

[14] Bentley L R. Solving and calibrating groundwater flowsystems with the penalty method//Hipel K W. Stochasticand Statistical Methods in Hydrology and EnvironmentalEngineering (Volume 2): Stochastic and Statistical Modellingwith Groundwater and Surface Water Applications.London: Kluwer Academic Publishers, 1994: 289.

[15] 刘佩贵, 束龙仓. 傍河水源地地下水水流数值模拟的不确定性. 吉林大学学报: 地球科学版, 2008, 38(4):639-643.

[16] 程天文, 陈洪经. 随机水文学: 周文德教授来华讲学主要内容之一. 水文, 1981(2): 30-33.

[17] 王文圣, 丁晶, 金菊良. 随机水文学. 北京: 中国水利水电出版社, 2008.

[18] Jaynes E T. Information theory and statistical mechanics.Physical Review, 1957, 106(4): 620-630.

[19] 肖可以, 宋松柏. 最大熵原理在水文频率参数估计中的应用. 西北农林科技大学学报: 自然科学版, 2010, 38(2): 197-205.

[20] 陈守煜. 模糊水文学与水资源系统模糊优化原理. 大连: 大连理工大学出版社, 1990.

[21] 陈奇南, 梁洪峻. 模糊集和粗糙集. 计算机工程, 2002,28(8): 138-140.

[22] 陈守煜, 李庆国, 李敏. 基于模糊优选神经网络与GIS结合的流域面雨量预测方法. 北京工业大学学报, 2009,35(2): 162-167.

[23] 吴佳文, 王丽学, 汪可欣. 粗糙集理论在年径流预测中的应用. 节水灌溉, 2008(4): 35-37.

[24] Cloke H L, Pappenberger F, Renaud J P. Multi-MethodGlobal Sensitivity Analysis (MMGSA) for modelingfloodplain hydrological processes. Hydrological Processes,2008, 22(11): 1660-1674.

[25] Huang Y, Chen X, Li Y P, et al. A fuzzy-based simulationmethod for modeling hydrological processes under uncertainty.Hydrological Processes, 2010, 24(25): 3718-3732.

[26] Beven K J, Binley A. The future of distributed models:model calibration and uncertainty prediction. HydrologicalProcesses, 1992, 6(3): 279-298.

[27] Brazier R E, Beven K J, Freer J, et al. Equifinality and uncertaintyin physically based soil erosion models: applicationof the GLUE methodology to WEPP-the Water ErosionPrediction Project-for sites in the UK and USA.Earth Surface Processes and Landforms, 2000, 25(8):825-845.

[28] Freer J, Beven K J, Anlbroise B. Bayesian estimation ofuncertainty in runoff prediction and the value of data: anapplication of the GLUE approach. Water Resources Research,1996, 32(7): 2161-2173.

[29] Cameron D S, Beven K J, Tawn J, et al. Flood frequencyestimation by continuous simulation for a gauged uplandcatchment (with uncertainty). Journal of Hydrology,1999, 219(3-4): 169-187.

[30] Schulz K, Beven K J. Data-supported robust parameterizationsin land surface-atmosphere flux predictions: Towardsa top-down approach. Hydrological Processes,2003, 17(11): 2259-2277.

[31] 赵冬泉, 王浩正, 陈吉宁, 等. 城市暴雨径流模拟的参数不确定性研究. 水科学进展, 2009, 20(1): 45-51.

[32] Aronica G, Hankin B, Beven K. Uncertainty and equifinalityin calibrating distributed roughness coefficients ina flood propagation model with limited data. Advances inWater Resources, 1998, 22(4): 349-365.

[33] Pappenberger F, Cloke H L, Balsamo G, et al. Global runoffrouting with the hydrological component of the ECMWFNWP system. International Journal of Climatology,2010, 30(14): 2155-2174.

[34] Salazar O, Joel A, Wesstr?m I, et al. Modelling dischargefrom a coastal wastershed in southeast Sweden using anintegrated framework. Hydrological Processes, 2010, 24(26): 3837-3851.

[35] Montanari A. Large sample behaviors of the GeneralizedLikelihood Uncertainty Estimation (GLUE) in assessingthe uncertainty of rainfall-runoff simulations. Water ResourcesResearch, 2005, 41(8): W08406, DOI:10.1029/2004WR003826 .

[36] 卫晓婧, 熊立华. 改进的GLUE方法在水文模型不确定性研究中的应用. 水利水电快报, 2008, 29(6): 23 -25.

[37] 黄伟军,丁晶. 水文水资源系统贝叶斯分析现状与前景.水科学进展, 1994, 5(3): 242-247.

[38] 邓义祥, 郑丙辉, 富国, 等. Bayes 理论在河流水质模型参数识别中的应用. 环境科学学报, 2008, 28(3):568 -573.

[39] Krzysztofowicz R. Bayesian system for probabilistic riverstage forecasting. Journal of Hydrology, 2002, 268(1-4): 16-40.

[40] Thiemann M, Trosset M, Gupta H, et al. Bayesian recursiveparameter estimation for hydrologic models. WaterResources Research, 2001, 37(10): 2521-2535.

[41] Bulygina N, Gupta H. How Bayesian data assimilationcan be used to estimate the mathematical structure of amodel. Stochastic Environmental Research and Risk Assessment,2010, 24(6): 925-937.

[42] Yang J, Reichert P, Abbaspour K C, et al. Comparing uncertaintyanalysis techniques for a SWAT application tothe Chaohe Basin in China. Journal of Hydrology, 2008,358(1-2): 1-23.

[43] 张铭, 李承军, 张勇传. 贝叶斯概率水文预报系统在中长期径流预报中的应用. 水科学进展, 2009, 20(1):40-44.

[44] Schuwirth N, Acuña V, Reichert P. Development of amethanistic model(ERIMO-Ⅰ)for analyzing the temporaldynamics of the benthic community of an intermittentMediterranean stream. Ecological Modelling, 2011, 222(1): 91-104.

[45] 王建平, 程声通, 贾海峰. 基于MCMC法的水质模型参数不确定性研究. 环境科学, 2006, 27(1): 24-30.

[46] 陆乐, 吴吉春, 陈景雅. 基于贝叶斯方法的水文地质参数识别. 水文地质工程地质, 2008(5): 58 -63.
文章导航

/