研究综述

中国西部冰冻圈地区大气降水化学的研究进展

展开
  • 1. 中国气象科学研究院气候系统研究所, 北京 100081;
    2. 中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室, 兰州 730000;
    3. 中国气象局, 北京 100081;
    4. 乌鲁木齐市气象局, 乌鲁木齐 830002
李向应(1978-),男,博士后,主要研究方向为冰冻圈与全球变化。E-mail: shaanxilxy@163.com

收稿日期: 2010-06-01

  修回日期: 2010-10-01

  网络出版日期: 2011-01-25

基金资助

国家自然科学基金项目(40871036,41071043);中国科学院冰冻圈科学国家重点实验室开放基金项目(SKLCS 09-04)。

Progress in Precipitation Chemistry in Cryosphere Regions of Western China

Expand
  • 1. Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
    2. State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China;
    3. China Meteorological Administration, Beijing 100081, China;
    4. Urumqi Meteorological Bureau, Urumqi 830002, China

Received date: 2010-06-01

  Revised date: 2010-10-01

  Online published: 2011-01-25

摘要

大气降水化学是大气化学的重要组成部分,是评估人类活动对大气环境影响的可靠指标,而且保存在高海拔地区雪冰中的化学成分对研究局地和全球气候环境变化以及环境演变过程具有重要意义。中国西部冰冻圈地区的大气降水化学研究始于19世纪70年代末,目前已取得一些重要进展,特别是结合积雪和冰芯化学的研究获得了大量的降水化学资料。回顾了中国西部冰冻圈地区大气降水化学的研究背景,综述了该领域取得的主要研究成果并对其研究前景进行了展望。

本文引用格式

李向应, 秦大河, 韩添丁, 成鹏 . 中国西部冰冻圈地区大气降水化学的研究进展[J]. 地理科学进展, 2011 , 30(1) : 3 -16 . DOI: 10.11820/dlkxjz.2011.01.001

Abstract

Atmospheric precipitation chemistry is a credible indicator describing the anthropogenic influence on atmospheric environment. Chemical compositions in snow and ice in high-elevation regions play an important role on environmental change on regional and global scales and its evolution process. Precipitation studies in cryosphere regions of western China began in the late 1970s, and many results have been achieved, in particular those about precipitation data obtained from snow cover and ice core. This paper reviewed the research history and major results of precipitation chemistry in China. In addition, it is necessary to establish long-term and systemic monitoring stations that represent regional precipitation characteristics combined with the Global Atmospheric Observation Network, China Acid Rain Observation Network, and the observation stations of Chinese Academy Sciences, and it is important to collect snow cover and ice core samples to supplement dataset of precipitation chemistry in high-elevation regions. Moreover, we should strengthen studies on trace element, organic acid, POPs and so on in precipitation based on the advanced-analysis technology (mass spectrum, gas chromatography-mass spectroscopy and the like) to supply more evidences to anthropogenic influence. Furthermore, it is also necessary to attach importance to the present-process research of atmospheric aerosol-snow cover-ice core, which plays an essential role in establishing a spatial distribution model of atmospheric precipitation chemistry in the cryosphere regions of western China.

参考文献

[1] 康世昌, 丛志远. 青藏高原大气降水和气溶胶化学特征研究进展. 冰川冻土, 2006, 28(3): 371-379.

[2] Tiwaria S, Kulshrestha U C, Padmanabhamurty B. Monsoon rain chemistry and source apportionment using receptor modeling in and around National Capital Region (NCR) of Delhi, India. Atmospheric Environment, 2007, 41(27): 5595-5604.

[3] Wang Y, Wai K M, Gao J, et al. The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in North-eastern China. Atmospheric Environment, 2008, 42(13): 2959-2970.

[4] Siva S B, Sekhar M, Riotte J, et al. Non-linear regression model for spatial variation in precipitation chemistry for South India. Atmospheric Environment, 2009, 43: 1147-1152.

[5] Calvo A I, Olmo F J, Lyamani H, et al. Chemical composition of wet precipitation at the background EMEP station in Viznar Granada, Spain (2002-2006). Atmospheric Research, 2010, 96 (2-3): 408-420.

[6] Galloway J N. The composition of precipitation in remote area. Journal of Geophysical Research, 1982, 87(11): 8771-8786.

[7] Al-Khashman O A. Ionic composition of wet precipitation in the Petra Region, Jordan. Atmospheric Research, 2005, 78(1-2): 1-12.

[8] Luo L C, Qin B Q, Song Y Z, et al. Seasonal and regional variations in precipitation chemistry in the Lake Taihu Basin, China. Atmospheric Environment, 2007, 41(12): 2674-2679.

[9] Li Y, Yu X L, Cheng H B, et al. Chemical characteristics of precipitation at three Chinese regional background stations from 2006 to 2007. Atmospheric Research, 2010, 96(1): 173-183.

[10] Galloway J N, Gaudry A. The composition of precipitation on Amsterdam Island, Indian Ocean. Atmospheric Environment, 1984, 18(2): 2649-2656.

[11] Satsangi G S, Lakhani A, Khare P, et al. Composition of rainwater at a semi-arid rural site in India. Atmospheric Environment, 1998, 32(21): 3783-3793.

[12] Halstead M J R, Cunninghame R G, Hunter K A. Wet deposition of trace metals to a remote site in Fordland, New Zealand. Atmospheric Environment, 2000, 34(4): 65-676.

[13] Mayewski P A, Twiker M S, Whitlow S L. Climate change during the last deglaciation in Antarctica. Science, 1996, 272(16): 36-38.

[14] 效存德, 秦大河, 任贾文, 等. 冰冻圈关键地区雪冰化学的时空分布及环境指示意义. 冰川冻土, 2002, 24(5): 492-499.

[15] Kang S C, Zhang Q G, Kaspar S, et al. Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmospheric Environment, 2007, 41(34): 7208-7218.

[16] Xu J Z, Hou S G, Qin D H, et al. A 108.83-m ice-core record of atmospheric dust deposition at Mt. Qomolangma (Everest), Central Himalaya. Quaternary Research, 2010, 73(1): 33-38.

[17] Wolff E W, Barbante C, Becagli S, et al. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quaternary Science Reviews, 2010, 29(1-2): 285-295.

[18] Wake C P, Dibb J, Mayewski P A, et al. The chemical composition of aerosols over eastern Himalaya and Tibetan Plateau during low dust periods. Atmospheric Environment, 1994, 28(4): 695-704.

[19] Osada K, Shido Y, Iida H, et al. Deposition processes of ionic constituents to snow cover. Atmospheric Environment, 2010, 44(3): 347-353.

[20] Liu Y P, Geng Z X, Hou S G. Spatial and seasonal variation of major ions in Himalayan snow and ice: A source consideration. Journal of Asian Earth Sciences, 2010, 37(2): 195-205.

[21] Araguaas-Araguaas L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over Southeast Asia. Journal of Geophysical Research, 1998, 103(D22): 28721-28742.

[22] Xiao C D, Qin D H, Yao T D, et al. The chemical records in the surface layer of a glacier in Tanggula Mts., Tibetan Plateau. Journal of Glaciology and Geocryology, 1998, 20(4): 458-465.

[23] Tian L D, Masson-Delmotte V, Stievenard M, et al. Tibetan plateau summer monsoon northward extent revealed by measurements of water stable isotopes. Journal Geophysical Research, 2001, 106(D22): 28081-28088.

[24] Tian L D, Yao T D, MacClune K, et al. Stable isotopic variations in west China: a consideration of moisture sources. Journal Geophysical Research, 2007, 112 (D10): 1-12.

[25] Liu Z F, Tian L D, Chai X R, et al. A model-based determination of spatial variation of precipitation δ18O over China. Chemical Geology, 2008, 249: 203-212.

[26] Ottar B. Air, Water, and Soil Pollution, 1976: 105-117.

[27] 王文兴, 许鹏举. 中国大气降水化学研究进展. 化学进展, 2009, 21(2-3): 266-281.

[28] Lehmann C M B, Bowersox V C, Larson S M. Spatial and temporal trends of precipitation chemistry in the United States, 1985-2002. Environmental Pollution, 2005, 135(3): 347-361.

[29] Zimmermann F, Matschullat J, Bruggemann E, et al. Temporal and elevation-related variability in precipitation chemistry from 1993 to 2002, eastern Erzgebirge, Germany. Water, Air and Soil Pollution, 2006, 170(1-4): 123-141.

[30] Namrata D, Ruby D, Gautam R C, et al. Chemical composition of precipitation at background level. Atmospheric Research, 2010, 95(1): 108-113.

[31] 章申, 于维新. 珠穆朗玛峰地区水化学特征, 珠穆朗玛峰地区科学考察报告, 1966-1968 (自然地理). 北京: 科学出版社, 1975: 102-123.

[32] 章申. 珠穆朗玛峰高海拔地区雪冰中的微量元素. 地理学报, 1979, 34(1): 12-17.

[33] 王平, 骆鸿珍. 托木尔峰西琼台兰冰雪中的痕量元素含量. 冰川冻土, 1980, 2(增刊): 77-79.

[34] 田伟之, 李广生. 珠穆朗玛峰地区冰、雪、河水样品的反应堆中子活化分析//穆朗玛峰地区科学考察报告(1975), 气象与环境. 北京: 科学出版社, 1980: 199-215.

[35] 黎秉铭. 用高温石墨炉原子吸收法测定和研究珠穆朗玛峰地区冰雪水样中的镉、铅、铜、铬、锰//珠穆朗玛峰地区科学考察报告(1975), 气象与环境. 北京: 科学出版社, 1980: 216-221.

[36] 陆宗鹏, 刘玉兰. 用逆向伏安法测定珠穆朗玛峰样品中铜、铅、锌、镉//珠穆朗玛峰地区科学考察报告(1975), 气象与环境. 北京: 科学出版社, 1980: 222-231.

[37] 章申, 吴紫旺. 希夏邦马峰地区自然水(冰雪融水)的水化学特征, 希夏邦马峰地区科学考察报告, 中国希夏邦马峰登山队科学考察队. 北京: 科学出版社, 1982: 92-97.

[38] 王平, 刘智. 阿尔泰山友谊峰地区冰、雪及其受冰川融水补给径流中的微量元素含量. 环境科学, 1982, 3(3): 33-35.

[39] 王平. 阿尔泰山友谊峰哈拉斯冰川冰雪痕量元素分析. 冰川冻土, 1983, 5(1): 63-69.

[40] 王平, 王靖泰. 敦德平顶型高海拔冰川区冰雪化学中的化学元素特征. 环境科学, 1985, 6(3): 65-69.

[41] Niewodniczanski J. The altitude effect on the isotopic composition of snow in high mountains. Journal of Glaciology, 1981, 27(95): 99-111.

[42] Mayewski P A, Lyons W B. Chemical composition of a high altitude fresh snowfall in the Ladakh Himalayas. Geophysical Research Letter, 1983, 10(1): 105-108.

[43] Lyons W B, Mayewski P A. Nitrate plus nitrite concentrations in a Himalayan ice core. Geophysical Research Letters, 1983, 10(12): 1160-1163.

[44] Watanabe O. First Results from Himalaya Glacier Coring Project in 1981-1982. Bulletin of Glacier Research, 1984, 2: 7-13.

[45] Mayewski P A. Snow chemistry from Xixabangma Peak, Tibet. Journal of Glaciology, 1986, 33(112): 542-543.

[46] Jenkins M D, Drever J I, Reider R G, et al. Chemical composition of fresh snow on Mount Everest. Journal of Geophysical Research, 1987, 92(D9): 10999-11002.

[47] Wake C P. Snow accumulation studies in the central Karakoram//Proceedings of the Eastern Snow Conference, 44th Annual Meeting. 1987: 19-33.

[48] Wake C P. Glaciochemical investigations as a tool for determining the spatial and seasonal variation of snow accumulation in the central Karakorum, northern Pakistan. Annals of Glaciology, 1989, 13: 279-284.

[49] 姚檀栋, 盛文坤, 蒲健辰. 青藏高原的冰雪化学研究//姚檀栋, 上田丰, 等. 青藏高原冰川气候与环境: 1989 年中日青藏高原冰川考察研究. 北京: 科学出版社, 1993: 8-15.

[50] 李忠勤, 姚檀栋, 皇翠兰, 等. 古里雅冰帽中化学沉积特征和现代大气环境记录. 青藏高原形成、演化、环境变迁和生态系统研究年报(1994). 北京: 科学出版社, 1995: 11-20.

[51] 李月芳, 姚檀栋, 盛文坤, 等. 古里雅冰帽8米浅冰芯的化学成分组成特征及其来源. 冰川冻土, 1997, 19(2): 173-179.

[52] Wake C P, Mayewski P A, Li Z Q, et al. Modern eolian dust deposition in central Asia. Tellus, 1994, 46B: 220-233.

[53] Shrestha A B, Wake C P, Dibb J E. Chemical composition of aerosol and snow in the high Himalaya during the summer monsoon season. Atmospheric Environment, 1997, 31(17): 2815-2826.

[54] Valsecchi S, Smiraglia C, Tartari G, et al. Chemical composition of monsoon deposition in the Everest region. The Science of the Total Environment, 1999, 226(2-3): 187-199.

[55] Marinoni A, Polesello S, Smiraglia C, et al. Chemical composition of fresh snow samples from the southern slope of Mt.Everest region (Khumbu Himal region, Nepal). Atmospheric Environment, 2001, 35(18): 3183-3190.

[56] Kang S C, Qin D H, Mayewski P A, et al. Chemical composition of fresh snow on Xixabangma Peak, Central Himalaya, during the summer monsoon season. Journal of Glaciology, 2002, 48(161): 337-339.

[57] Kang S C, Mayewski P A, Qin D H, et al. Seasonal differences in snow chemistry from the vicinity of Mt. Everest, Central Himalayas. Atmospheric Environment, 2004, 38(18): 2819-2829.

[58] Balerna A, Balerna E, Pecci M, et al. Chemical and radio-chemical composition of fresh snow samples from northern slope of Himalayas (Cho Oyu range, Tibet). Atmospheric Environment, 2003, 37(12): 1573-1581.

[59] Zhang D D, Jim C Y, Peart M R, et al. Precipitation chemistry of Lhasa and other remote towns, Tibet. Atmospheric Environment, 2003, 37(2): 231-240.

[60] 杨龙元, 任燕霞, 贾立. 青海省五道梁降水化学成分的初步研究. 高原气象, 1991, 10(2): 209-216.

[61] 汪君霞, 姚檀栋, 徐柏青, 等. 慕士塔格冰芯中的甲酸、乙酸记录及其变化特征. 科学通报, 2004, 49(15): 1542-1546.

[62] 皇翠兰, 蒲健辰. 西大滩煤矿冰川区冰川冰、雪和河水的阳离子特征. 冰川冻土, 1995, 17(3): 283-288.

[63] 盛文坤, 王宁练, 蒲健辰. 唐古拉山冬克玛底冰川作用区的水化学特征. 冰川冻土, 1996, 18(3): 235-243.

[64] 任贾文. 祁连山党河南山扎子沟29号冰川区雪、降水和地表水化学特征研究. 冰川冻土, 1999, 21(2): 151-154.

[65] 李全莲, 王宁练, 武小波, 等. 祁连山七一冰川流域各类环境介质中多环芳烃的分布特征与来源研究. 冰川冻土, 2008, 30(6): 991-997.

[66] 李全莲, 王宁练, 武小波, 等. 青藏高原雪冰中正构烷烃的组成特征及其环境意义. 中国科学, 2009, 39(9): 1279-1287.

[67] 霍文冕, 姚檀栋. 敦德冰芯19世纪中叶以来的环境记录. 地球化学, 2001, 30(3): 203-207.

[68] 游来光, 刘延刚, 李炎辉. 新疆乌鲁木齐地区冬季降水与云水酸度及其化学成分的初步观测分析. 气象科学研究院院刊, 1987, 2(1): 60-66.

[69] 王文新, 施文全, 张建新. 新疆北部冬季降雪的化学特征分析. 新疆气象, 1998, 21(1): 30-32.

[70] 侯书贵. 乌鲁木齐河源区大气降水的化学特征. 冰川冻土, 2001, 23(1): 80-84.

[71] 侯书贵, 秦大河, 任贾文, 等. 天山乌鲁木齐河源1号冰川pH和电导率记录的现代环境过程. 冰川冻土, 1999, 21(3): 225-232.

[72] 孙俊英, 秦大河, 任贾文, 等. 乌鲁木齐河源区水体和大气气溶胶化学成分研究. 冰川冻土, 2002, 24(2): 186-191.

[73] Zhao Z P, Tian L D, Emily F, et al. Study of chemical composition of precipitation at an alpine site and a rural site in the Urumqi River Valley, Eastern TianShan, China. Atmospheric Environment, 2008, 42(39): 8934-8942.

[74] Xu M, Lü A H, Xu F, et al. Seasonal chemical composition variations of wet deposition in Urumchi, Northwestern China. Atmospheric Environment, 2008, 42(5): 1042-1048.

[75] 骆洪珍. 天山乌鲁木齐河源1号冰川的水化学特征. 冰川冻土, 1983, 5(2): 55-64.

[76] Wake C P, Mayewski P A, Wang P, et al. Anthropogenic sulfate and Asian dust signals in snow from Tien Shan, Northwest China. Annals of Glaciology, 1992, 16: 45-52.

[77] Li X Y, Li Z Q, Ding Y J, et al. Seasonal variations of pH and electrical conductivity of a snow-firn pack on Glacier No.1, eastern Tianshan, China. Cold Regions Science and Technology, 2007, 48(1): 55-63.

[78] 张坤, 李忠勤, 王飞腾, 等. 天山乌鲁木齐河源1号冰川积累区气溶胶和表层雪中可溶性矿物粉尘的变化特征及相互关系: 以Ca2+、Mg2+为例. 冰川冻土, 2008, 30(1): 113-118.

[79] 张宁宁, 李忠勤, 何元庆, 等. 乌鲁木齐河源1号冰川积累区气溶胶和表层雪中SO42-的季节变化及成因分析. 冰川冻土, 2009, 31(1): 62-67.

[80] 张明军, 周平, 李忠勤, 等. 天山乌鲁木齐河源1号冰川大气气溶胶和新雪中可溶性离子关系研究. 地理科学, 2010, 30(1): 141-148.

[81] 丁文慈, 李心清, 李忠勤, 等. 乌鲁木齐河源1号冰川表层雪的化学特征: 以低分子有机酸和无机阴离子为例. 冰川冻土, 2007, 29(5): 704-709.

[82] 陈喜保, 章申, 唐以剑. 乌鲁木齐地区冰川、河、湖水中重金属形态及分布特征. 地理研究, 1993, 12(2): 69-76.

[83] 李传金, 李忠勤, 李月芳, 等. 天山乌鲁木齐河源1号冰川积雪内痕量金属元素的季节变化及其环境意义. 中国科学, 2007, 37(5): 676-681.

[84] 李心清, 秦大河, 周会. 天山与珠峰冰芯草酸根的一致性及其环境意义. 中国环境科学, 2003, 23(1): 1-6.

[85] 李心清, 秦大河, 蒋倩, 等. 中国天山过去43年大气环境变化:来自冰芯草酸根记录的证据. 地球与环境, 2005, 33(1): 1-5.

[86] 李心清, 周会, 秦大河. 冰芯记录所显示的天山地区的大气污染. 矿物岩石地球化学通报, 2006, 25(增刊1): 23-26.

[87] 李心清, 秦大河, 周会. 天山乌鲁木齐河源一号冰川冰芯中生物有机酸记录及其与南北极地区的差异. 科学通报, 2000, 45(13): 1419-1423.

[88] 李向应, 丁永建, 刘时银, 等. 天山哈密庙尔沟平顶冰川和奎屯河哈希勒根51号冰川雪层剖面及雪坑中pH和电导率的对比研究. 冰川冻土, 2007, 29(5): 710-716.

[89] 李向应, 刘时银, 韩添丁, 等. 天山东部冰川雪坑离子浓度特征的对比研究: 以奎屯河哈希勒根51号冰川和哈密庙尔沟平顶冰川为例. 地球科学进展, 2008, 23(12): 1252-1260.

[90] 董志文, 李忠勤, 张明军, 等. 天山奎屯河哈希勒根51号冰川雪坑化学特征及环境意义. 地理科学, 2010,30 (1): 149-156.

[91] 董志文, 李忠勤, 王飞腾, 等. 天山东部冰芯pH和电导率的大气环境空间差异. 地理学报, 2009, 64(1): 107-116.

[92] 李真, 姚檀栋, 田立德, 等. 慕士塔格冰芯记录的近50年来大气中铅含量变化. 科学通报, 2006, 51(15): 1833-1836.

[93] 李月芳, 姚檀栋, 王宁练, 等. 帕米尔东部慕士塔格冰芯Sb浓度变化记录揭示的近50a来中亚区域人类活动. 冰川冻土, 2008, 30(3): 359-364.

[94] 赵华标, 姚檀栋, 徐柏青, 等. 慕士塔格冰芯中近百年来NH4+浓度的变化. 科学通报, 2008, 53(7): 815-820.

[95] 李月芳, 姚檀栋, 皇翠兰, 等. 古里雅冰帽中化学成分的空间变化. 冰川冻土, 1993, 15(3): 467-473.

[96] 姚檀栋, 盛文坤, 蒲健辰. 唐古拉冰芯的化学组成及变化. 青藏高原冰川气候与环境, 北京: 科学出版社, 1989: 38-43.

[97] 武小波, 王宁练, 李全莲, 等. 黄河源区阿尼玛卿山耶和龙冰川表层雪化学组成. 冰川冻土, 2008, 30(3): 415-420.

[98] 效存德, 秦大河, 姚檀栋, 等. 南、北极和青藏高原现代降水中Pb、Cd反映的全球大气污染. 科学通报, 1999, 44(23): 2558-2562.

[99] 霍文冕, 姚檀栋, 李月芳. 7000m处冰芯中Pb记录揭示人类活动污染在加剧. 科学通报, 1999, 44(9): 978-981.

[100] 霍文冕, 姚檀栋, 李月芳. 达索普冰芯中Pb记录反映的大气污染及其同位素证据. 冰川冻土, 1999, 21(2): 125-128.

[101] 李月芳, 姚檀栋, 王宁练, 等. 青藏高原古里雅冰芯中痕量元素镉记录的大气污染: 1900-1991. 环境化学, 2000, 19(2): 176-180.

[102] 李月芳, 姚檀栋, 王宁练, 等. 可可西里马兰冰川冰芯中Cd 和Pb 的浓度. 环境化学, 2002, 21(2): 194-196.

[103] 李月芳, 姚檀栋, 盛文坤, 等. 干旱区粉尘对古里雅冰帽中化学记录的影响. 海洋地质与第四纪地质, 1999, 19(2): 103-108.

[104] 姚檀栋, 焦克勤, 李忠勤, 等. 古里雅冰帽气候环境记录. 中国科学, 1994, 24 (7): 766-773.

[105] 姚檀栋, 杨志红, 焦克勤, 等. 近2000年来气候环境变化的冰芯记录研究. 地学前缘, 1997, 4(1-2): 95-100.

[106] 姚檀栋, 邬光剑, 蒲建辰, 等. 古里雅冰芯中钙离子与大气粉尘变化关系. 科学通报, 2004, 49(9): 888-892.

[107] 盛文坤, 姚檀栋, 李月芳, 等. 古里雅冰芯中钙离子含量及与气候变化关系. 冰川冻土, 1999, 21(1): 19-21.

[108] 王宁练, 姚檀栋, Thompson L G. 近1500年来古里雅冰芯中NO3-浓度变化及其环境意义. 冰川冻土, 1998, 20(1): 14-20.

[109] 王宁练, 姚檀栋, Thompson L G. 青藏高原古里雅冰NO3-浓度与太阳活动. 科学通报, 1998, 43(3): 309-312.

[110] 孙俊英, 秦大河, 姚檀栋, 等. 古里雅冰芯中生物有机酸的初步分析. 冰川冻土, 1998, 20(2): 163-165.

[111] 刘业祥, 刘永建, 韩建康. 青藏高原崇测冰芯氯离子、硫酸根离子记录. 云南地理环境研究, 2007, 19(3): 11-14.

[112] 张文敬. 各拉丹冬峰东冰川冰、雪、水地球化学特征. 山地研究, 1996, 14(1): 16-21.

[113] 张玉兰, 康世昌, 张强弓, 等. 青藏高原中部各拉丹冬峰雪冰记录特征. 冰川冻土, 2007, 29(5): 685-693.

[114] 王平, 皇翠兰, 刘子东. 西藏希夏邦马峰地区雪冰化学特征. 环境科学, 1988, 19(1): 23-26.

[115] Wake C P, Mayswski P A, Spencer M J. A review of central Asian glaciochemical data. Annals of Glaciology, 1990, 14: 301-306.

[116] 田立德, 姚檀栋, 张寅生, 等. 希夏邦马夏季降水中水化学特征. 环境科学, 1998, 19(6): 1-5.

[117] Xie S C, Yao T D, Kang S C, et al. Climatic and environmental implications from organic matter in Dasuopu glacier in Xixiabangma in Qinghai-Tibetan Plateau. Science in China, 1999, 42(4): 383-391.

[118] 康世昌, 秦大河, 姚檀栋, 等. 喜马拉雅山中段达索普粒雪芯中夏季风和尘埃信号记录研究. 科学通报, 1999, 44(20): 2230-2235.

[119] 康世昌, 秦大河, 姚檀栋, 等. 希夏邦马峰北坡地区夏末降水化学特征探讨. 环境科学学报, 2000, 20(5): 574-578.

[120] 秦大河. 南极冰盖表层雪内的物理过程和现代气候及环境记录. 北京: 科学出版社, 1995: 98-124.

[121] Yang Q, Mayawski P A, Linder E, et al. Chetnica species spatial distribution and relationship to elevation and snow accumulation rate over the Greenland Ice Sheet. Journal of Geophysical Research, 1996, 101(D13): 18629-18637.

[122] 康世昌, 秦大河, 姚檀栋, 等. 喜马拉雅山中段北坡对流层中上部大气降水化学的高程分布特征. 环境科学, 2001, 22(2): 118-122.

[123] 谢树成, 姚檀栋, 康世昌, 等. 青藏高原希夏邦马峰地区雪冰有机质的气候与环境意义. 中国科学, 1999, 29 (5): 457-465.

[124] Xie S C, Yao T D, Kang S C, et al. Geochemical analysis of a Himalayan snowpit profile: implication for atmospheric pollution and climate. Organic Geochemistry, 2000, 31(1): 15-23.

[125] Wang P L, Yao T D, Tian L D, et al. Recent high-resolution glaciochemical record from a Dasuopu firn core of middle Himalayas. Chinese Science Bulletin, 2008, 53 (3): 418-425.

[126] 段克勤, 姚檀栋, 蒲健辰. 达索普浅孔冰芯中记录的现代环境过程. 海洋地质与第四纪地质, 1998, 18(1): 65-70.

[127] 康世昌, 秦大河, 姚檀栋. 希夏邦马峰冰川粒雪中环境季节变化记录研究. 地理学报, 2000, 55(1): 55-65.

[128] 段克勤, 洪健昌. 喜马拉雅山达索普冰芯近400 a来NO3-浓度的变化. 冰川冻土, 2010, 32(2): 231-234.

[129] Kang S C, Wake C P, Qin D, et al. Monsoon and dust signals recorded in the Dasuopu Glacier, Tibetan Plateau. Journal of Glaciology, 2000, 46(153): 222-226.

[130] 张东启, 秦大河, 侯书贵, 等. 珠穆朗玛峰地区的新降雪和雪坑样品的化学特征研究. 兰州大学学报, 2002, 38(4): 119-124.

[131] Wake C P, Mayewski P A, Xie Z C, et al. Regional variation of monsoon and desert dust signals record in Asian glaciers. Geophysical Research Letters, 1993, 20: 1411-1414.

[132] Shrestha A B, Wake C P, Dibb J E, et al. Aerosol and precipitation chemistry at a remote Himalayan site in Nepal. Aerosol Science and Technology, 2002, 36(4): 441-456.

[133] 中国科学院兰州冰川冻土研究所. 中国冰川概论. 北京: 科学出版社, 1988: 122-128.

[134] 秦翔, 秦大河, 皇翠兰, 等. 珠穆朗玛峰北坡绒布冰川区水体的化学特征. 环境科学, 1999, 20(1): 1-6.

[135] 张东启, 秦大河, 任贾文, 等. 珠穆朗玛峰地区雪坑化学特征分析. 环境科学, 2001, 22(2): 123-125.

[136] 王峰, 朱彤, 徐柏青, 等. 珠穆朗玛峰东绒布冰川新降雪中有机氯农药. 中国科学, 2007, 37(5): 670-675.

[137] 耿志新, 侯书贵, 张东启, 等. 1844AD以来珠穆朗玛峰地区大气环境变化高分辨率冰芯记录. 冰川冻土, 2007, 29(5): 694-703.

[138] 康世昌, 秦大河, Mayewski P A, 等. 珠穆朗玛峰地区近200年冰芯草酸根记录及其环境意义. 中国环境科学, 2000, 20(3): 203-206.

[139] Zhang D D, Jim C Y, Peart M R, et al. Rapid changes of precipitation pH in Qinghai Province, the northeastern Tibetan Plateau. The Science of the Total Environment, 2003, 305(1-3): 241-248.

[140] 张文敬, 王平. 南迦巴瓦峰地区冰川冰、雪、水的地球化学特征. 山地研究, 1984, 2(3): 155-164.

[141] 郑伟, 姚檀栋, 徐柏青, 等. 羊卓雍流域雪坑中化学离子记录研究. 环境科学, 2008, 29(6): 1488-1494.

[142] 李宗省, 何元庆, 庞洪喜, 等. 我国典型季风海洋性冰川区雪坑中主要阴、阳离子的来源. 地理学报, 2007, 62(9): 992-1001.

[143] Zhang N N, He Y Q, Theakstone W H, et al. Chemical composition of aerosol and fresh snow and tourism influences at Baishui Glacier No. 1 from Mt. Yulong, southeastern Tibetan Plateau. Journal of Earth Science, 2010, 21(2): 199-209.

[144] 何元庆, 姚檀栋, 杨梅学, 等. 玉龙山温冰川浅冰芯记录现代指示意义. 冰川冻土, 2000, 22(3): 235-242.

[145] 顾娟, 何元庆, 张忠林, 等. 玉龙雪山浅冰芯pH对冰川作用区降水量变化的响应. 冰川冻土, 2005, 27(4): 509-514.

[146] 邓家铨, 莫天麟. 高山云雾水及降水pH的初步考察. 环境科学, 1985, 6(1): 6-10.

[147] 李洪珍. 我国一些地区降水酸度的分析. 大气环境和酸雨. 1986, 2: 40-45.

[148] 熊际翎, 范增华. 贵州省梵净山大气和降水背景考察. 大气环境, 1987, 1: 23-28.

[149] 罗彩芳, 朱敏. 黄山空气质量与降水酸度调查. 大气环境, 1987, 4: 47-48.

[150] Legrand M R, Delmas R J. The ionic balance of Antarctic snow: A 10-year detailled record. Atmospheric Environment, 1984, 18(9): 1867-1874.

[151] Dayan U, Miller J M, Keene W C, et al. An analysis of precipitation chemistry data from Alaska. Atmospheric Environment, 1985, 19(4): 651-657.

[152] 柳海燕, 张小曳, 沈志宝. 青藏高原五道梁低层大气气溶胶来源的初步分析. 高原气象, 1997, 16(2): 122-129.

[153] 刘嘉麒, Keene W C. 中国丽江内陆背景降水值研究. 中国环境科学, 1993, 13(4): 246-250.

[154] Hara H, Kitamura M, Mori A, et al. The precipitation chemistry in Japan 1989-1993. Water, Air and Soil Pollution, 1995, 85(4): 2307-2312.

[155] 汤洁, 薛虎圣, 于晓岚, 等. 瓦里关山降水化学特征的初步研究. 环境科学学报, 2000, 20(4): 420-425.

[156] 章典, 师长兴, 假拉. 青藏高原降水化学研究. 环境科学学报, 2004, 24(3): 555-557.

[157] Li C L, Kang S C, Zhang Q G, et al. Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmospheric Research, 2007, 85(3-4): 351-360.

[158] 胡铁明, 吴新记. 格尔木市自然降水酸度监测及其原因分析. 青海环境, 1989(1): 24-37.

[159] 丽灵, 高晓鄱. 青海省降水酸度监测及其原因分析. 青海环境, 1989(3): 72-77.

[160] 章典, 师长兴, 假拉. 西藏降水化学分析. 干旱区研究, 2005, 22(4): 471-475.

[161] 李宗省, 何元庆, 院玲玲, 等. 丽江市降水中常量离子的化学特征. 环境化学, 2008, 27(5): 648-652.

[162] 李宗省, 何元庆, 贾文雄, 等. 丽江市夏季降水化学组成分析. 环境科学, 2009, 30(2): 362-367.

[163] Xiao C D, Kang S C, Qin D H, et al. Transportation of atmospheric impurities over the Qinghai-Xizang (Tibet) Plateau as shown by snow chemistry. Journal of Asia Earth Sciences, 2001, 20(3): 231-239.

[164] 效存德, 秦大河, 任贾文, 等. 雪冰电导率反映的南、北极和青藏高原大气环境差异. 极地研究, 1999, 11(1): 1-7.

[165] 效存德, 姚檀栋, 秦大河, 等. 青藏高原雪冰电导率与降水碱度以及大气粉尘载荷变化的关系. 中国科学, 2001, 31(5): 362-371.

[166] Kang S C, Qin D H, Mayewski P A. Evidence of Kuwaiti oil fires in the Dasuopu Glacier ice core, central Himalaya. Journal of Glaciology, 2001, 47(158): 158-159.

[167] 耿志新, 侯书贵, 张东启, 等. 喜马拉雅山雪冰主要离子的时空变化特征及来源分析. 冰川冻土, 2007, 29 (2): 191-200.
文章导航

/