生态系统碳增减专栏

区域尺度陆地生态系统固碳速率和增汇潜力概念框架及其定量认证科学基础

展开
  • 1. 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室CERN综合研究中心,北京100101;
    2. 中国科学院研究生院,北京100049;
    3. 北京师范大学,北京100875
于贵瑞(1959-),男,博士生导师,研究员,主要研究方向为生态系碳循环与全球变化。Email: yugr@igsnrr.ac.cn

收稿日期: 2011-01-01

  修回日期: 2011-04-01

  网络出版日期: 2011-07-25

基金资助

国家重点基础研究发展规划973 计划项目(2010CB833504);中国科学院战略性先导科技专项(XDA05050602)。

Conceptual Framework of Carbon Sequestration Rate and Potential Increment of Carbon Sink of Regional Terrestrial Ecosystem and Scientific Basis for Quantitative Carbon Authentification

Expand
  • 1. Synthesis Research Center of CERN, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Beijing Normal University, Beijing 100875, China

Received date: 2011-01-01

  Revised date: 2011-04-01

  Online published: 2011-07-25

摘要

陆地生态系统固碳速率、增汇潜力及其定量认证研究不仅是应对气候变化的急迫需求,更是地球系统碳循环科学研究的核心任务,也是陆地生态系统管理的科学基础。在过去20 多年的碳管理实践中发展了许多增汇技术,同时也提出了许多关于陆地生态系统固碳速率和增汇潜力的科学概念、以及碳汇计量和认证的方法。但不同行业、不同学科在各自的科学研究和实践活动中对相关概念的理解存在较大差异,甚至是十分混乱的。本文从陆地生态系统固碳的基本概念出发,系统性地阐述了生态系统固碳量、固碳速率、固碳潜力等相关概念;并根据增汇技术实现的难易程度分析了现实固碳潜力、社会经济固碳潜力、技术固碳潜力和理论固碳潜力、以及《京都议定书》认可的固碳潜力等相关概念;最后阐述了碳汇定量认证、分析和评价的时间连续清查法、空间代替时间参照系法、限制因子分析法等碳汇定量认证方法的科学基础、局限性和不确定性。通过对区域尺度陆地生态系统固碳速率和增汇潜力的概念框架及其定量认证科学基础开展系统性的探讨,期望能够引起中国学术界和相关行业部门的重视,推动碳汇相关概念使用的科学化和碳汇定量认证标准化,为中国固碳速率、增汇潜力的计量、报告、认证和核查方法论和技术体系的建立奠定基础。

本文引用格式

于贵瑞, 王秋凤, 刘迎春, 刘颖慧 . 区域尺度陆地生态系统固碳速率和增汇潜力概念框架及其定量认证科学基础[J]. 地理科学进展, 2011 , 30(7) : 771 -787 . DOI: 10.11820/dlkxjz.2011.07.001

Abstract

It is not only an urgent need for mitigating global climate change to study the carbon sequestration rate, potential increment of carbon sink of regional terrestrial ecosystem and its quantitative authentification, but also the core task of carbon cycle research in earth system, and the scientific foundation of terrestrial ecosystem management. In the past two decades, vast research have been done at home and abroad, and a lot of feasible techniques for increasing carbon sink have been developed in the practice of carbon management. Meanwhile, many concepts of carbon sequestration rate and potential increment of carbon sink of terrestrial ecosystem, and methods for carbon accounting and authentification have been put forward based on different demands and subjects. Due to lacking systematic and sufficient discussion, large discrepancy exists in the understanding of related concepts among different sections and subjects, which leads to the concept confusion and the difficulty in the standardization of accounting methods. In this paper, related concepts such as carbon storage, carbon sequestration rate, and carbon sequestration potential of ecosystem were expounded systematically based on the basic concept of carbon sequestration of terrestrial ecosystem; practical potential of carbon sequestration, socioeconomic potential of carbon sequestration, technical potential of carbon sequestration, theoretical potential of carbon sequestration, and the potential of carbon sequestration ratified by Kyoto Protocol were analyzed based on the realizability of the techniques for increasing carbon sink; and the scientific foundation, limitation and uncertainty of different methods for authenticating, analyzing, and assessing carobn sink, such as time continuous inventory method, space for time reference method, and limited factor analysis method as well, were expatiated finally. The final goal of this paper is to arouse the attention of academe and related sections, to promote the standardization in quantitative authentification of carbon sink, and to provide foundation for establishing methodology and technique system for accounting, reporting, authentificating, and checking of carbon sink in China.

参考文献

[1] 于贵瑞. 全球变化与陆地生态系统碳循环和碳蓄积. 北京: 气象出版社, 2003.

[2] 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法. 北京: 高等教育出版社, 2006.

[3] 于贵瑞, 王秋凤, 朱先进. 区域尺度陆地生态系统碳收支评估方法及其不确定性. 地理科学进展, 2011, 30(1): 103-113.

[4] Chapin F S, Matson P, Mooney H A. Principes of Terrestrial Ecosystem Ecology. New York: Springer-Verlag, 2002.

[5] Odum E P. The strategy of ecosystem development. Science, 1969, 164: 262-270.

[6] Hudiburg T, Law B, Turner D P, et al. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecological Application, 2009, 19(1): 163-180.

[7] Keith H, Mackey B, Berry S, et al. Estimating carbon carrying capacity in natural forest ecosystems across heterogeneous landscapes: Addressing sources of error. Global Change Biology, 2010, 16(11): 2971-2989.

[8] Stewart C E, Paustian K, Conant R T, et al. Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations. Soil Biology and Biochemistry, 2009, 41(2): 357-366.

[9] Muller-Landau H C. Carbon cycle: Sink in the African jungle. Nature, 2009, 457: 969-970.

[10] Smithwick E A H, Harmon M E, Remillard S M, et al. Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecological Application, 2002, 12(5): 1303-1317.

[11] IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Vol. 4 Agriculture, Forestry and Other Land Use the National Greenhouse Gas Inventories Programme, eds. Eggleston H S, Buendia L, Miwa K, et al. Institute for Global Environmental Strategies, Kanagawa, Japan, 2006.

[12] Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2010, main report. Rome, 2010. www.fao.org/forestry/fra2010.

[13] IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri R K and Reisinger A (eds.)]. IPCC, Geneva, Switzerland, 2007: 104.

[14] Eggers J, Lindner M, Zudin S, et al. Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Global Change Biology, 2008, 14: 2288-2303.

[15] 张小全, 侯振宏. 森林、造林、再造林和毁林的定义与碳计量问题. 林业科学, 2003, 39(2): 145-152.

[16] 张小全, 侯振宏. 第二承诺期LULUCF有关议题谈判进展与对策建议. 气候变化研究进展, 2009, 5(2): 95-102.

[17] Ellerman A. D, Buchner B K. The European Union Emissions Trading Scheme: Origins, Allocation, and Early Results. Review of Environmental Economics and Policy, 2001, 1(1): 66-87.

[18] 王金南. 环境经济学. 北京: 清华大学出版社, 1994: 510.
文章导航

/