生态环境

区域尺度陆地生态系统碳收支评估方法及其不确定性

展开
  • 1. 中国科学院地理科学与资源研究所中国科学院生态系统网络观测与模拟重点实验室CERN综合研究中心, 北京100101;
    2. 中国科学院研究生院, 北京100049
于贵瑞(1959-),男,博士生导师,研究员,主要研究方向为生态系碳循环与全球变化。E-mail: yugr@igsnrr.ac.cn

收稿日期: 2010-06-01

  修回日期: 2010-11-01

  网络出版日期: 2011-01-25

基金资助

国家重点基础研究发展规划973 计划项目(2010CB833504);中国科学院地理科学与资源研究所自主部署项目(200903007)。

Methods and Uncertainties in Evaluating the Carbon Budgets of Regional Terrestrial Ecosystems

Expand
  • 1. Synthesis Research Center of CERN, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, CAS, Beijing 100049, China

Received date: 2010-06-01

  Revised date: 2010-11-01

  Online published: 2011-01-25

摘要

定量评估区域和不同类型生态系统的碳收支,可以为科学预测气候变化、服务于减缓和适应气候变化的区域碳管理提供科学依据,是生态系统与全球变化科学研究的重要科技问题。虽然区域碳收支的定量评估和认证还很难用当前的各种直接观测和评估方法来精确实现,但是,近年来这方面做了很多研究工作,也取得了一定进展。为此,本文综述了陆地生态系统碳收支的观测技术体系,重点分析区域尺度陆地生态系统碳收支评估方法及其不确定性。分析结果认为,为了定量认证中国区域的陆地生态系统、主要行业以及与碳汇相关项目的碳汇功能及其时空格局,急需采用“多尺度观测、多方法印证、多过程融合、跨尺度认知和跨尺度模拟”的研究思路,构建基于野外台站的碳循环及其通量的观测和实验研究网络、发展地面站点-陆地样带-生态网络与卫星和航空观测结合的多尺度观测系统,发展观测数据-生态过程模型-卫星遥感模型-GIS 空间分析系统。同时,本文指出:生态系统碳-氮-水循环间的耦合机制及其对碳源汇时空格局影响研究必将成为生态系统碳循环及其区域碳收支评估和定量认证科学研究的重要发展方向和新的研究热点。

本文引用格式

于贵瑞, 王秋凤, 朱先进 . 区域尺度陆地生态系统碳收支评估方法及其不确定性[J]. 地理科学进展, 2011 , 30(1) : 103 -113 . DOI: 10.11820/dlkxjz.2011.01.013

Abstract

Quantitative assessment of carbon budgets at regional scale or in different ecosystems is an important scientific issue in the field of ecosystem and global change, which can provide scientific basis for forecasting climate change and regional carbon management serving for mitigation and adaptation to climate change. Though assessment and authentication of regional carbon budgets could not be fulfilled precisely using current measurements and evaluation methods, many progresses had been made. In this paper, we reviewed the observation technique systems, especially the methods and their uncertainties in evaluating regional carbon budget. To evaluate the carbon sink function of ecosystems, main industries, and projects related to carbon sink and their spatiotemporal patterns quantitatively, it is urgent to build an observation and experiment network based on field platforms and to develop a multi-scale observation system comprised by field platforms, terrestrial transects and ecological networks combined with satellites and aviation observations. The system based on observation data, ecological process model, remote sensing model and GIS spatial analysis is also needed to be built. These systems should be under the guideline of multi-scale observation, multi-method confirmation, multi-process fusion, across-scale cognition and simulation. Meanwhile, cycles of carbon, nitrogen and water in terrestrial ecosystems are coupled by various biological processes, while the knowledge of the coupling mechanisms and their influences on the spatiotemporal patterns of carbon source or sink was limited, so it will be an important aspect and new research hot in the research of ecosystem C cycle and regional carbon budget assessment and authentication.

参考文献

[1] IPCC, Summary for Policymakers of Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 2007.

[2] 于贵瑞. 全球变化与陆地生态系统碳循环和碳蓄积. 北京: 气象出版社, 2003.

[3] Li W. Progresses and perspectives of ecological research in China. Journal of Resources and Ecology, 2010, 1(1):3-14.

[4] Yu G R, Li X R, Wang Q F, et al. Carbon storage and its spatial pattern of terrestrial ecosystem in China. Journal of Resources and Ecology, 2010, 1(2): 97-109.

[5] 方精云, 郭兆迪, 朴世龙, 等. 1981-2000 年中国陆地植被碳汇的估算. 中国科学: D辑, 2007, 37(6): 804-812.

[6] 刘国华, 方精云. 中国森林碳动态及其对全球碳平衡的贡献. 生态学报, 2000, 20(5): 733-740.

[7] 方精云, 慈龙骏. 中国森林生物量的估算: 对fang 等science一文(Science, 2001, 291: 2320-2322)的若干说明.植物生态学报, 2002, 26(2): 243-249.

[8] 朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498.

[9] 钟华平, 樊江文, 于贵瑞, 等. 草地生态系统碳蓄积的研究进展. 草业科学, 2005, 22(1): 4-11.

[10] 张旭东, 彭镇华, 漆良, 等. 生态系统通量研究进展. 应用生态学报, 2005, 16(10): 1976-1982.

[11] 邹建文, 焦燕, 王跃思, 等. 稻田CO2、CH4和N2O排放通量测定方法研究. 南京农业大学学报, 2002, 25(4):45-48.

[12] 郑循华, 徐仲均, 王跃思, 等. 开放式空气CO2浓度增高影响稻田-大气CO2净交换的静态暗箱法观测研究. 应用生态学报, 2002, 13(10): 1240-1244.

[13] 张红星, 王效科, 冯宗炜, 等. 用于测定陆地生态系统与大气间CO2交换通量的多通道全自动通量箱系统. 生态学报, 2007, 27(4): 1273-1282.

[14] Liang N, Inoue G, Fujinuma Y. A multichannel automated chamber system for continuous measurement of forest soil CO2 efflux. Tree Physiology, 2003, 23(12): 825-832.

[15] Liang N, Hirano T, Zheng Z M, et al. Continuous measurement of soil CO2 efflux in a larch forest by automated chamber and concentration gradient techniques. Biogeosciences Discuss, 2010, 7(1): 1345-1375.

[16] 贾金生, 李俊, 张永强. 夏玉米生长盛期农田土壤CO2排放的研究. 中国生态农业学报, 2003, 11(3): 1-4.

[17] 段晓男, 王效科, 冯兆忠,等. 内蒙古河套灌区春小麦苗期生态系统CO2通量变化研究. 环境科学学报, 2005, 25(2): 166-171.

[18] 郑泽梅, 于贵瑞, 孙晓敏, 等. 涡度相关法和静态箱/气相色谱法在生态系统呼吸观测中的比较. 应用生态学报,2008, 19(2): 290-298.

[19] 杜睿, 王庚辰, 吕达仁, 等. 静态箱法原位观测草原CO2通量的探讨. 生态学报, 2002, 22(12): 2167-2174.

[20] 娄运生, 李忠佩, 张桃林. 不同利用方式对红壤CO2排放的影响. 生态学报, 2004, 24(5): 978-983.

[21] 尹春梅, 谢小立, 王凯荣. 稻田冬闲期CO2气体排放的观测研究. 生态环境, 2007, 16(1): 71-76.

[22] 朱咏莉, 童成立, 吴金水, 等. 透明箱法监测稻田生态系统CO2通量的研究. 环境科学, 2005, 26(6): 8-14.

[23] 张文丽, 陈世苹, 苗海霞, 等. 开垦对克氏针茅草地生态系统碳通量的影响. 植物生态学报, 2008, 32(6):1301-1311.

[24] 宋霞, 刘允芬, 徐小锋. 箱法和涡度相关法测碳通量的比较研究. 江西科学, 2003, 21(3): 206-210.

[25] Zheng X H, Xie B H, Liu C Y, et al. Quantifying net ecosystem carbon dioxide exchange of a short-plant cropland with intermittent chamber measurements. Global Biogeochemical Cycles, 2008, 22(3), GB3031, doi:10.1029/2007GB003104.

[26] 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法. 北京: 高等教育出版社, 2006.

[27] Yu G R, Fu Y L, Sun X M, et al. Recent progress and future directions of Chinaflux. Science in China: Series D,2006, 49(SuppⅡ): 1-23.

[28] Massman W J, Lee X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology,2002, 113(1-4): 121-144.

[29] 于贵瑞. 人类活动与生态系统变化的前沿科学问题. 北京: 高等教育出版社, 2009.

[30] Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458(7241):1009-1013.

[31] Frolking S, Goulden M L, Wofsy S C, et al. Modelling temporal variability in the carbon balance of a spruce/ moss boreal forest. Global Change Biology, 1996, 2(4):343-366.

[32] Houghton R A, Hackler J L, Lawrence K T. The U.S. carbon budget: Contributions from land-use change. Science,1999, 285(5427): 574-578.

[33] Del Grosso S, Parton W, Stohlgren T, et al. Global potential net primary production predicted from vegetationclass, precipitation, and temperature. Ecology, 2008, 89(8): 2117-2126.

[34] Daolan Z, Stephen P, Robb W. Terrestrial net primary production estimates for 0.5° grid cells from field observationsa contribution to global biogeochemical modeling.Global Change Biology, 2003, 9(1): 46-64.

[35] Chamberlain P M, Emmett B A, Scott W A, et al. No change in topsoil carbon levels of Great Britain, 1978-2007. Biogeosciences Discuss., 2010, 7(2): 2267-2311.

[36] Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292(5525): 2320-2322.

[37] Ni J. Net primary productivity in forests of China: Scaling-up of national inventory data and comparison with model predictions. Forest Ecology and Management,2003, 176(1-3): 485-495.

[38] Piao S, Fang J, Zhou L, et al. Changes in biomass carbon stocks in China's grasslands between 1982 and 1999. Global Biogeochemical Cycles, 2007, 21(2): GB2002.doi:10.1029/2005GB002634.

[39] 胡中民, 樊江文, 钟华平, 等. 中国温带草地地上生产力沿降水梯度的时空变异性. 中国科学: D 辑, 2006, 36(12): 1154-1162.

[40] 韩彬, 樊江文, 钟华平. 内蒙古草地样带植物群落生物量的梯度研究. 植物生态学报, 2006, 30(4): 553-562.

[41] Fan J, Zhong H, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Climatic Change,2008, 86(3): 375-396.

[42] 刘纪远, 王绍强, 陈镜明, 等. 1990-2000 年中国土壤碳氮蓄积量与土地利用变化. 地理学报, 2004, 59(4):483-496.

[43] 王绍强, 周成虎. 中国陆地土壤有机碳库的估算. 地理研究, 1999, 18(4): 349-356.

[44] 王绍强, 刘纪远, 于贵瑞. 中国陆地土壤有机碳蓄积量估算误差分析. 应用生态学报, 2003, 14(5): 797-802.

[45] 于东升, 史学正, 孙维侠, 等. 基于1:100 万土壤数据库的中国土壤有机碳密度及储量研究. 应用生态学报,2005, 16(12): 2279-2283.

[46] Li Z P, Han F X, Su Y, et al. Assessment of soil organic and carbonate carbon storage in China. Geoderma, 2007,138(1-2): 119-126.

[47] Xie Z, Zhu J, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13(9): 1989-2007.

[48] 韩冰, 王效科, 逯非, 等. 中国农田土壤生态系统固碳现状和潜力. 生态学报, 2008, 28(2): 612-619.

[49] 金琳, 李玉娥, 高清竹, 等. 中国农田管理土壤碳汇估算. 中国农业科学, 2008, 41(3):734-743.

[50] 鲁春霞, 谢高地, 肖玉, 等. 我国农田生态系统碳蓄积及其变化特征研究. 中国生态农业学报, 2005, 13(3):35-37.

[51] 李洁静, 潘根兴, 李恋卿, 等. 红壤丘陵双季稻稻田农田生态系统不同施肥下碳汇效应及收益评估. 农业环境科学学报, 2009, 28(12): 2520-2525.

[52] 赵荣钦, 秦明周. 中国沿海地区农田生态系统部分碳源/汇时空差异. 生态与农村环境学报, 2007, 23(2): 1-6.

[53] Huang Y, Zhang W, Sun W J, et al. Net Primary Production of Chinese Croplands from 1950 to 1999. Ecological Applications, 2007, 17(3): 692-701.

[54] Sun W J, Huang Y, Zhang W, et al. Estimating topsoil SOC sequestration in croplands of Eastern China from 1980 to 2000. Australian Journal of Soil Research, 2009,47(3): 261-272.

[55] Zhang W J, Xiao H A, Tong C L, et al. Estimating organic carbon storage in temperate wetland profiles in Northeast China. Geoderma, 2008, 146(1-2): 311-316.

[56] 于贵瑞, 孙晓敏. 中国陆地生态系统碳通量观测技术及时空变化特征. 北京: 科学出版社, 2008.

[57] Fu Y, Zheng Z, Yu G, et al. Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 2009, 6(12): 2879-2893.

[58] Yu G R, Zhang L M, Sun X M, et al. Environmental controls over carbon exchange of three forest ecosystems in Eastern China. Global Change Biology, 2008, 14(11):2555-2571.

[59] Kaminski T, Knorr W, Rayner P J, et al. Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Global Biogeochemical Cycles, 2002, 16(4): 1066. doi:10.1029/2001 GB001463.

[60] Stephens B B, Gurney K R, Tans P P, et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 2007, 316(5832):1732-1735.

[61] Gurney K R, Chen Y H, Maki T, et al. Sensitivity of atmospheric CO2 inversions to seasonal and interannual variations in fossil fuel emissions. Journal of Geophysical Research,2005, 110: D10308, doi:10.1029/2004 JD005373.

[62] Tao B, Cao M K, Li K R, et al. Spatial patterns of terrestrial net ecosystem productivity in China during 1981-2000. Science in China: Series D, 2007, 50(5):745-753.

[63] Zhou T, Luo Y Q. Spatial patterns of ecosystem carbon residence time and Npp-driven carbon uptake in the conterminous United States. Global Biogeochemical Cycles, 2008, 22, GB3032, doi:10.1029/2007GB002939.

[64] Huang Y, Yu Y Q, Zhang W, et al. Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 2009, 149(1): 106-129.

[65] 延晓冬, 赵俊芳. 基于个体的中国森林生态系统碳收支模型FORCCHN 及模型验证. 生态学报, 2007, 27(7):2684-2694.

[66] 周广胜. 草地生态系统碳收支模型//黄耀, 周广胜, 吴金水, 等. 中国陆地生态系统碳收支模型. 北京: 科学出版社, 2006.

[67] 黄玫, 季劲钧, 曹明奎, 等. 中国区域植被地上与地下生物量模拟. 生态学报, 2006, 26(12): 4156-4163.

[68] 顾峰雪, 于贵瑞, 温学发, 等. 干旱对亚热带人工针叶林碳交换的影响. 植物生态学报, 2008, 32(5): 1041-1051.

[69] Gu F X, Cao M K, Wen X F, et al. A comparison between simulated and measured CO2 and water flux in a subtropica coniferous forest. Science in China: Series D, 2006,49: 241-251.

[70] 张文菊, 童成立, 吴金水, 等. 典型湿地生态系统碳循环模拟与预测. 环境科学, 2007, 28(9): 1905-1911.

[71] Dufrene E, Davi H, Francois C, et al. Modelling carbon and water cycles in a beech forest Part I: Model description and uncertainty analysis on modelled Nee. Ecological Modelling, 2005, 185(2-4): 407-436.

[72] Jung M, Vetter M, Herold M, et al. Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global Biogeochemical Cycles, 2007, 21, GB4021, doi:10.1029/2006GB002915.

[73] Koca D, Smith B, Sykes M T. Modelling regional climate change effects on potential natural ecosystems in Sweden.Climatic Change, 2006, 78(2-4): 381-406.

[74] Tang J Y, Zhuang Q L. Equifinality in parameterization of process-based biogeochemistry models: A significant uncertainty source to the estimation of regional carbon dynamics.Journal of Geophysical Research, 2008, 113,G04010, doi:10.1029/2008JG000757.

[75] 张娜, 于贵瑞, 赵士洞, 等. 基于遥感和地面数据的景观尺度生态系统生产力的模拟. 应用生态学报, 2003, 14(5): 643-652.

[76] Yuan W P, Liu S, Zhou G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 2007, 143(3-4):189-207.

[77] Li Z, Yu G, Xiao X, et al. Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using Modis images and climate data. Remote Sensing of Environment,2007, 107(3): 510-519.

[78] 林文鹏, 王臣立, 赵敏, 等. 基于森林清查和遥感的城市森林净初级生产力估算. 生态环境, 2008, 17(2):766-770.

[79] 王臣立, 牛铮, 郭治兴, 等. 基于植被指数和神经网络的热带人工林地上蓄积量遥感估测. 生态环境学报,2009, 18(5): 1830-1834.

[80] 王军邦, 刘纪远, 邵全琴, 等. 基于遥感-过程耦合模型的1988-2004 年青海三江源区净初级生产力模拟. 植物生态学报, 2009, 33(2): 254-269.

[81] Prinn R, Jacoby H, Sokolov A, et al. Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies. Climatic Change, 1999, 41(3-4):469-546.

[82] Xiao X, Hollinger D, Aber J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 2004, 89(4):519-534.

[83] Xiao X, Zhang Q, Braswell B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 2004, 91(2): 256-270.

[84] Xiao X, Zhang Q, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 2005, 94(1): 105-122.

[85] Luo Y Q, White L W, Canadell J G, et al. Sustainability of terrestrial carbon sequestration: A case study in duke forest with inversion approach. Global Biogeochemical Cycles, 2003, 17, 1021, doi:10.1029/2002GB001923.

[86] 米娜, 于贵瑞, 王盘兴, 等. 基于ealco 模型对中亚热带人工针叶林CO2 通量季节变异的模拟. 植物生态学报,2007, 31(6): 1119-1131.

[87] Cao M K, Yu G R, Liu J Y, et al. Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle. Science in China Series D-Earth Sciences, 2005, 48(s1): 17-32.

[88] Zhang L, Yu G, Luo Y, et al. Influences of error distributions of net ecosystem exchange on parameter estimation of a process-based terrestrial model: A case of broad-leaved Korean pine mixed forest in Changbaishan,China. Acta Ecologica Sinica, 2008, 28(7): 3017-3026.

[89] 张黎, 于贵瑞, Luo Y Q, 等. 基于模型数据融合的长白山阔叶红松林碳循环模拟. 植物生态学报, 2009, 33(6):1044-1055.

[90] Zhang L, Luo Y, Yu G, et al. Estimated carbon residence times in three forest ecosystems of Eastern China: Applications of probabilistic inversion. Journal of Geophysical Research, 2010, 115, G01010, doi:10.1029/2009JG001004.
文章导航

/