地理科学进展 ›› 2014, Vol. 33 ›› Issue (8): 1039-1046.doi: 10.11820/dlkxjz.2014.08.004
出版日期:
2014-08-25
发布日期:
2014-08-25
作者简介:
作者简介:方欧娅(1989-),女,安徽安庆人,博士研究生,主要研究方向为气候变化及其影响,Email:
基金资助:
Ouya FANG1,2(), Yang WANG1,2, Xuemei SHAO1(
)
Online:
2014-08-25
Published:
2014-08-25
摘要:
森林净初级生产力(NPP)反映了森林植被固定和转换光合产物的能力,表示了森林碳汇功能强度,也是评价森林植被的演替状况以及陆地生态系统承载力的主要指标。基于遥感、清查资料等方法估算NPP已经取得了一些进展,但传统的研究方法受限于观测(调查)年份,难以有效获取长时间尺度的区域森林种群或群落年际NPP。树轮资料较为有效地反映了历史时期森林植被的逐年生长状况,从而在估算高精度且长时间尺度区域森林种群及群落NPP中具有较大的优势。本文对利用树轮资料重建区域森林NPP的两种主要方法进行了总结,第一种方法主要是依据树轮资料提供的立木逐年生长量进行生物量以及NPP的估算;第二种方法则是利用树轮指数与其他植被指数的相关性间接反演过去时间段区域森林群落NPP的变化。上述两种估算NPP的方法均存在较多的限制性,未来利用树轮资料估算NPP的时空精度仍有待提高。
中图分类号:
方欧娅, 汪洋, 邵雪梅. 基于树轮资料重建森林净初级生产力的研究进展[J]. 地理科学进展, 2014, 33(8): 1039-1046.
Ouya FANG, Yang WANG, Xuemei SHAO. Advances in study of reconstruction of regional forest net primary productivity based on tree rings[J]. PROGRESS IN GEOGRAPHY, 2014, 33(8): 1039-1046.
[1] | 程瑞梅, 封晓辉, 肖文发, 等. 2011. 北亚热带马尾松净生产力对气候变化的响应. 生态学报, 31(8): 2086-2095. |
Cheng R M, Feng X H, Xiao W F, et al.2011. Response of net productivity of masson pine plantation to climate change in north subtropical region. Acta Ecologica Sinica, 31(8): 2086-2095. | |
[2] | 方精云, 刘国华, 徐嵩龄. 1996. 我国森林植被的生物量和净生产量. 生态学报, 16(5): 497-508. |
Fang J Y, Liu G H, Xu S L.1996. Biomass and net production of forest vegetation in China. Acta Ecologica Sinica, 16(5): 497-508. | |
[3] | 高卫东, 袁玉江, 张瑞波. 2012. 基于树木年轮的呼图壁河流域草地归一化植被指数重建. 东北林业大学学报, 40(4): 26-30. |
Gao W D, Yuan Y J, Zhang R B.2012. Reconstruction of normalized difference vegetation index of grassland in Hutobi River Basin based on tree-ring. Journal of Northeast Forestry University, 40(4): 26-30. | |
[4] | 何吉成, 王丽丽, 邵雪梅. 2005. 漠河樟子松树轮指数与标准化植被指数的关系研究. 第四纪研究, 25(2): 252-257. |
He J C, Wang L L, Shao X M.2005. The relationships between Mongolian Scotch Pine tree ring indices and normalized difference vegetation. Quaternary Sciences, 25(2): 252-257. | |
[5] | 罗天祥.1996. 中国主要森林类型生物生产力格局及其数学模型[D]. 北京: 中国科学院地理科学与资源研究所. |
Luo T X.1996. Patterns of net primary productivity for Chinese major forest types and their mathematical models[D]. Beijing, China: Institute of Geographic and Natural Resources Research, Chinese Academy of Sciences. | |
[6] | 穆少杰, 李建龙, 周伟, 等. 2012. 2001-2010年内蒙古植被净初级生产力的时空格局及其与气候的关系. 生态学报, 67(9): 3752-3764. |
Mu S J, Li J L, Zhou W, et al.2012. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010. Acta Geographica Sinica, 67(9): 3752-3764. | |
[7] | 彭俊杰, 何兴元, 陈振举, 等. 2012. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应: 基于 BIOME 鄄 BGC 模型和树木年轮的模拟. 应用生态学报, 23(7): 1733-1742. |
Peng J J, He X Y, Chen Z J, et al.2012. Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2: a simulation based on BIOME-BGC model and tree-ring data. Chinese Journal of Applied Ecology, 23(7): 1733-1742. | |
[8] | 王斌, 刘某承, 张彪. 2009. 基于森林资源清查资料的森林植被净生产量及其动态变化研究. 林业资源管理, 2(1): 35-43. |
Wang B, Liu M C, Zhang B.2009. Dynamics of net production of Chinese forest vegetation based on forest inventory data. Forest Resources Management, 2(1): 35-43. | |
[9] | 王瑞丽, 程瑞梅, 肖文发, 等. 2011. 北亚热带马尾松年轮宽度与NDVI的关系. 生态学报, 31(19): 5762-5770. |
Wang R L, Cheng R M, Xiao W F, et al.2011. Relationship between masson pine tree-ring width and NDVI in north subtropical region. Acta Ecologica Sinica, 31(19): 5762-5770. | |
[10] | 王文志, 刘晓宏, 陈拓, 等. 2010. 基于祁连山树轮宽度指数的区域NDVI重建. 植物生态学报, 34(9): 1033-1044. |
Wang W Z, Liu X H, Chen T, et al.2010. Reconstruction of regional NDVI using tree-ring width chronologies in the Qilian Mountains, Northwestern China. Chinese Journal of Plant Ecology, 34(9): 1033-1044. | |
[11] | 吴祥定, 邵雪梅. 1996. 采用树轮宽度资料分析气候变化对树木生长量影响的尝试. 地理学报, 51(1): 92-101. |
Wu X D, Shao X M.1996. A preliminary study on impact of climate change on tree growth using tree ring-width data. Acta Geographica Sinica, 51(1): 92-101. | |
[12] | 於琍, 朴世龙. 2014. IPCC第五次评估报告对碳循环及其他生物地球化学循环的最新认识. 气候变化研究进展, 10(1): 33-36. |
Yu L, Piao S L.2014. Key scientific points on carbon and other biogeochemical cycles from the IPCC fifth assessment report. Advances in Climate Change Research, 10(1): 33-36. | |
[13] | 张远东, 刘彦春, 刘世荣, 等. 2012. 基于年轮分析的不同恢复途径下森林乔木层生物量和蓄积量的动态变化. 植物生态学报, 36(2): 117-125. |
Zhang Y D, Liu Y C, Liu S R, et al.2012. Dynamics of stand biomass and volume of the tree layer in forests with different restoration approaches based on tree-ring analysis. Chinese Journal of Plant Ecology, 36(2): 117-125. | |
[14] | Aber J S, Nang K N, Wilkins N, et al.1998. Remote sensing of forest growth and response to climatic variations in Northeastern Kansas, USA. 27th International Symposium on Remote Sensing of Environment. Romssa Suohkan, Norway, June 8-12, 1998. |
[15] | Andreu-Hayles L, D'Arrigo R, Anchukaitis K J, et al.2011. Varying boreal forest response to Arctic environmental change at the Firth River, Alaska. Environmental Research Letters, 6(4): doi: 10.1088/1748-9326/6/4/045503. |
[16] | Beck P S A, Andreu-Hayles L, D'Arrigo R, et al.2013. A large-scale coherent signal of canopy status in maximum latewood density of tree rings at arctic treeline in North America. Global and Planetary Change, 100: 109-118. |
[17] | Berner L T, Beck P S A, Bunn A G, et al.2011. High-latitude tree growth and satellite vegetation indices: correlations and trends in Russia and Canada (1982-2008). Journal of Geophysical Research-Biogeosciences, 116: G01015. |
[18] | Bouriaud O, Breda N, Dupouey J L, et al.2005. Is ring width a reliable proxy for stem-biomass increment: a case study in European beech. Canadian Journal of Forest Research, 35(12): 2920-2933. |
[19] | Chen J M, Mo G, Pisek J, et al.2012. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global Biogeochemical Cycles, 26(1): GB1019. |
[20] | Chen Z J, Li J B, Fang K Y, et al.2012. Seasonal dynamics of vegetation over the past 100 years inferred from tree rings and climate in Hulunbei'er steppe, Northern China. Journal of Arid Environments, 83: 86-93. |
[21] | Ciais P, Sabine C, Bala G, et al.2013. Carbon and other biogeochemical cycles//Stocker T F, Qin D, Plattner G-K. Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Chang. Cambridge & New York: Cambridge University Press |
[22] | Cook E R.1985. A time series analysis approach to tree ring standardization (dendrochronology, foresty, dendroclimatology, autoregressive process)[D]. Tucson, AZ: The University of Arizona. |
[23] | Cramer W, Bondeau A, Woodward F I, et al.2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7(4): 357-373. |
[24] | D'Arrigo R D, Jacoby G C, Fung I Y.1987. Boreal forests and atmosphere-biosphere exchange of carbon dioxide. Narure, 329: 321-323. |
[25] | D'Arrigo R D, Malmstrom C M, Jacoby G C, et al.2000. Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity. International Journal of Remote Sensing, 21(11): 2329-2336. |
[26] | Dobbertin M, Eilmann B, Bleuler P, et al.2010. Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 30(3): 346-360. |
[27] | Esper J, Frank D, Buntgen U, et al.2010. Trends and uncertainties in Siberian indicators of 20th century warming. Global Change Biology, 16(1): 386-398. |
[28] | Forbes B C, FAURIA M, Zetterberg P.2010. Russian Arctic warming and 'greening' are closely tracked by tundra shrub willows. Global Change Biology, 16(5): 1542-1554. |
[29] | Gholz H L, Grier C C, Campbell A G, et al.1979. Equations for estimating biomass and leaf area of plants in the Pacific northwest. Corvallis, OR: Oregon State University. |
[30] | Graumlich L J, Brubaker L B, Grier C C.1989. Long-term trends in forest net primary productivity: Cascade Mountains, Washington. Ecology. 70(2): 405-410. |
[31] | Hasenauer H, Nemani R R, Schadauer K, et al.1999. Forest growth response to changing climate between 1961 and 1990 in Austria. Forest ecology and management, 122(3): 209-219. |
[32] | Haxeltine A, Prentice I C.1996. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10(4): 693-709. |
[33] | Kaufmann R, D'Arrigo R, Paletta L, et al.2008. Identifying climatic controls on ring width: the timing of correlations between tree rings and NDVI. Earth Interactions, 12(14): 1-14. |
[34] | Kong G Q, Luo T X, Liu X S, et al.2012. Annual ring widths are good predictors of changes in net primary productivity of alpine Rhododendron shrubs in the Sergyemla Mountains, southeast Tibet. Plant Ecology, 213(11): 1843-1855. |
[35] | Leavitt S W, Chase T N, Rajagopalan B, et al.2008. Southwestern US tree-ring carbon isotope indices as a possible proxy for reconstruction of greenness of vegetation. Geophysical Research Letters, 35(12): L12704. |
[36] | Leblanc D C.1996. Using tree rings to study forest decline: an epidemiological approach based on estimated annual wood volume increment//Dean J S, Meko D M, Swetnam T W. Tree rings, environment and humanity, radiocarbon, department of geoscience. Tucson, AZ: University of Arizona: 437-449. |
[37] | Lopatin E, Kolstrom T, Spiecker H.2006. Determination of forest growth trends in Komi Republic (Northwestern Russia): combination of tree-ring analysis and remote sensing data. Boreal Environment Research, 11(5): 341-353. |
[38] | Malmstrom C M, Thompson M V, Juday G P, et al.1997. Interannual variation in global-scale net primary production: testing model estimates. Global Biogeochemical Cycles, 11(3): 367-392. |
[39] | Maselli F, Chiesi M, Barbati A, et al.2010. Assessment of forest net primary production through the elaboration of multisource ground and remote sensing data. Journal of Environmental Monitoring, 12(5): 1082-1091. |
[40] | Metsaranta J M, Kurz W A.2012. Inter-annual variability of ecosystem production in boreal jack pine forests (1975-2004) estimated from tree-ring data using CBM-CFS3. Ecological Modelling, 224(1): 111-123. |
[41] | Muukkonen P.2007. Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126(2): 157-166. |
[42] | Myneni R B, Keeling C, Tucker C, et al.1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626): 698-702. |
[43] | Naesset E, Gobakken T.2008. Estimation of above-and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sensing of Environment, 112(6): 3079-3090. |
[44] | Nemani R R, Keeling C D, Hashimoto H, et al.2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560-1563. |
[45] | Nogueira E M, Fearnside P M, Nelson B W, et al.2008. Estimates of forest biomass in the Brazilian Amazon: new allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management, 256(11): 1853-1867. |
[46] | Pettorelli N, Vik J O, Mysterud A, et al.2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9): 503-510. |
[47] | Picchio R, Neri F, Maesano M, et al.2011. Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret) stand in central Italy. Forest Ecology and Management, 262(2): 237-243. |
[48] | Prince S D, Becker-Reshef I, Rishmawi K.2009. Detection and mapping of long-term land degradation using local net production scaling: application to Zimbabwe. Remote Sensing of Environment, 113(5): 1046-1057. |
[49] | Rathgeber C, Nicault A, Guiot J, et al.2000. Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global and Planetary Change, 26(4): 405-421. |
[50] | Rathgeber C, Nicault A, Kaplan J O, et al.2003. Using a biogeochemistry model in simulating forests productivity responses to climatic change and CO2 increase: example of Pinus halepensis in Provence (south-east France). Ecological modelling, 166(3): 239-255. |
[51] | Rickebusch S, Lischke H, Bugmann H, et al.2007. Understanding the low-temperature limitations to forest growth through calibration of a forest dynamics model with tree-ring data. Forest Ecology and Management, 246(2-3): 251-263. |
[52] | Rossi S, Tremblay M J, Morin H, et al.2009. Growth and productivity of black spruce in even-and uneven-aged stands at the limit of the closed boreal forest. Forest Ecology and Management, 258(9): 2153-2161. |
[53] | Sitch S, Huntingford C, Gedney N, et al.2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9): 2015-2039. |
[54] | Steffen W, Noble I, Canadell J, et al.1998. The terrestrial carbon cycle: implications for the Kyoto Protocol. Science, 280(5368): 1393-1394. |
[55] | Stinson G, Kurz W A, Smyth C E, et al.2011. An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 17(6): 2227-2244. |
[56] | Su H, Sang W, Wang Y, et al.2007. Simulating Picea schrenkiana forest productivity under climatic changes and atmospheric CO2 increase in Tianshan Mountains, Xinjiang Autonomous Region, China. Forest Ecology and Management, 246(2-3): 273-284. |
[57] | Williams C J, Johnson A H, LePage B A, et al.2003. Reconstruction of tertiary Metasequoia forests. II. Structure, biomass, and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology, 29(2): 271-292. |
[58] | Wu Z T, Dijkstra P, Koch G W, et al.2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 17(2): 927-942. |
[59] | Zhao X, Tan K, Zhao S, et al.2011. Changing climate affects vegetation growth in the arid region of the Northwestern China. Journal of Arid Environments, 75(10): 946-952. |
[1] | 鲍艳磊, 吴朝阳, 郑东博. 大气污染对京津冀地区夏季植被生长峰值的影响[J]. 地理科学进展, 2023, 42(6): 1124-1138. |
[2] | 张燕杰, 武俊喜, 潘影, 张宪洲. 净初级生产力的人类占用研究进展[J]. 地理科学进展, 2022, 41(2): 341-350. |
[3] | 邓国富, 李明启. 树轮密度对气候的响应及重建研究进展[J]. 地理科学进展, 2021, 40(2): 343-356. |
[4] | 郄佳志, 张永. 基于树轮地貌学的山洪研究进展[J]. 地理科学进展, 2020, 39(3): 519-528. |
[5] | 董晓宇, 姚华荣, 戴君虎, 朱梦瑶. 2000—2017年内蒙古荒漠草原植被物候变化及对净初级生产力的影响[J]. 地理科学进展, 2020, 39(1): 24-35. |
[6] | 张芳芳, 郑永宏, 潘国艳, 袁帅, 孔繁希, 起永东, 王丹. 神农架地区树轮δ18O序列的气候指示意义[J]. 地理科学进展, 2018, 37(7): 946-953. |
[7] | 温小洁, 姚顺波, 赵敏娟. 基于降水条件的城镇化与植被覆盖协调发展研究[J]. 地理科学进展, 2018, 37(10): 1352-1361. |
[8] | 洪长桥, 金晓斌, 陈昌春, 王慎敏, 杨绪红, 项晓敏. 集成遥感数据的陆地净初级生产力估算模型研究综述[J]. 地理科学进展, 2017, 36(8): 924-939. |
[9] | 李斌, 王慧敏, 秦明周, 张鹏岩. NDVI、NDMI与地表温度关系的对比研究[J]. 地理科学进展, 2017, 36(5): 585-596. |
[10] | 范德芹, 赵学胜, 朱文泉, 郑周涛. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3): 304-319. |
[11] | 孙宇, 王丽丽. 全球落叶松属树轮气候学研究进展[J]. 地理科学进展, 2013, 32(12): 1760-1770. |
[12] | 聂勇, 刘林山, 张镱锂, 丁明军. 1982-2009 年珠穆朗玛峰自然保护区植被指数变化[J]. 地理科学进展, 2012, 31(7): 895-903. |
[13] | 于海达, 杨秀春, 徐斌, 金云翔, 高添, 李金亚. 草原植被长势遥感监测研究进展[J]. 地理科学进展, 2012, 31(7): 885-894. |
[14] | 高添, 徐斌, 杨秀春, 金云翔, 马海龙, 李金亚, 于海达. 青藏高原草地生态系统生物量碳库研究进展[J]. 地理科学进展, 2012, 31(12): 1724-1731. |
[15] | 彭琴, 齐玉春, 董云社, 何亚婷, 刘欣超, 孙良杰, 贾军强, 金钊. 干旱半干旱地区草地碳循环关键过程对降雨变化的响应[J]. 地理科学进展, 2012, 31(11): 1510-1518. |
|