地理科学进展 ›› 2020, Vol. 39 ›› Issue (3): 377-388.doi: 10.18306/dlkxjz.2020.03.003
收稿日期:
2019-02-28
修回日期:
2019-06-18
出版日期:
2020-03-28
发布日期:
2020-05-28
作者简介:
张凤(1993— ),女,江苏南通人,硕士生,主要从事城市地理和城市规划研究。E-mail: zhangfeng6322@qq.com
基金资助:
ZHANG Feng1,2, CHEN Yanguang2,*(), LIU Peng1
Received:
2019-02-28
Revised:
2019-06-18
Online:
2020-03-28
Published:
2020-05-28
Supported by:
摘要:
京津冀地区人水关系矛盾突出,分形可以有效描述城镇体系和水系时空演化特征,从而揭示两者演化关系,为城市问题的解决提供一些理论和经验依据。论文采用分形理论中的网格维数和多分维谱,首先分别刻画了两者的时空演化特征,其次探讨了城镇体系和水系结构之间的时空关系,最后探究了水系结构退化的影响因素。主要结论有:① 1990—2010年,京津冀地区建设用地的网格维数升高、自相似性增强、从集聚向分散转变,意味着建设用地朝着空间填充程度增强、有序、分散的方向发展,而水系反之,证明两者具有不同的时空演化方向;② 21世纪10年代,京津冀的人水关系十分紧张,南水北调虽然缓和了京津冀用水问题,改善了大尺度上的水系结构,但在小尺度上改善有限;③ 越靠近城市中心,建设用地分形形态发育越成熟,结构越有序,越靠近外围越混乱无序;④ 京津冀地区水系退化,由自然和人为两方面因素造成,21世纪以后人为因素的影响较为显著。针对京津冀地区水系退化,提出如下政策建议:在城市建设过程中,一方面科学规划城市水系,重视低等级水系的保护;另一方面节约集约利用水资源,完善水资源管理机制。未来,需要进一步探索城市发展和水系的非线性关系,为城市可持续发展提供依据。
张凤, 陈彦光, 刘鹏. 京津冀城镇体系与水系结构的时空关系研究[J]. 地理科学进展, 2020, 39(3): 377-388.
ZHANG Feng, CHEN Yanguang, LIU Peng. Spatiotemporal relationships between urban system and water system in the Beijing-Tianjin-Hebei region[J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 377-388.
表1
京津冀建设用地6个年份的网格维数计算结果
年份 | 整体网格维数 D | 第一标度区网格维数 D(1) | 第二标度区网格维数D(2) | 标度区网格维数差值 D(1)- D(2) |
---|---|---|---|---|
1990年 | 1.6711 | 1.7769 | 1.2758 | 0.5011 |
(0.9967) | (0.9998) | (0.9976) | ||
1995年 | 1.6957 | 1.7905 | 1.3311 | 0.4594 |
(0.9973) | (0.9997) | (0.9979) | ||
2000年 | 1.71 | 1.7992 | 1.3641 | 0.4351 |
(0.9976) | (0.9997) | (0.9983) | ||
2005年 | 1.7161 | 1.7998 | 1.3872 | 0.4126 |
(0.9979) | (0.9997) | (0.9985) | ||
2010年 | 1.7235 | 1.8006 | 1.4158 | 0.3848 |
(0.9982) | (0.9997) | (0.9986) | ||
2015年 | 1.7466 | 1.8069 | 1.4923 | 0.3146 |
(0.9988) | (0.9996) | (0.9989) |
表2
京津冀水系6个年份的网格维数计算结果
年份 | 整体网格维数D | 第一标度区网格维数 D(1) | 第二标度区网格维数D(2) | 标度区网格维数差值 D(1)- D(2) |
---|---|---|---|---|
1990 | 1.5365 | 1.7213 | 1.1969 | 0.5244 |
(0.9933) | (0.9999) | (0.9943) | ||
1995 | 1.5541 | 1.7317 | 1.2304 | 0.5013 |
(0.9940) | (0.9999) | (0.9960) | ||
2000 | 1.4911 | 1.7135 | 1.1300 | 0.5835 |
(0.9913) | (0.9998) | (0.9971) | ||
2005 | 1.4942 | 1.7072 | 1.1424 | 0.5648 |
(0.9919) | (0.9999) | (0.9972) | ||
2010 | 1.4819 | 1.7054 | 1.1323 | 0.5731 |
(0.9914) | (0.9998) | (0.9968) | ||
2015 | 1.5414 | 1.7598 | 1.1350 | 0.6248 |
(0.9907) | (0.9998) | (0.9949) |
[1] | Woldenberg M J, Berry B J L . Rivers and central places: analogous systems?[J]. Journal of Regional Science, 1967,7(2):129-139. |
[2] | Krugman P . Confronting the mystery of urban hierarchy[J]. Journal of the Japanese and International economies, 1996,10(4):399-418. |
[3] | Mandelbrot B B . How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967,156:636-638. |
[4] | Mandelbrot B B . The fractal geometry of nature[M]. New York, USA: W. H. Freeman and Company, 1983. |
[5] | Tarboton D G, Bras R L, Rodriguez-Iturbe I . The fractal nature of river networks[J]. Water Resources Research, 1988,24(8):1317-1322. |
[6] | La Barbera P, Rosso R . On the fractal dimension of stream networks[J]. Water Resources Research, 1989,25(4):735-741. |
[7] | 李后强, 艾南山 . 分形地貌学及地貌发育的分形模型[J]. 自然杂志, 1992(7):516-519. |
[ Li Houqiang, Ai Nanshan . Fractal geomorphology and fractal models of landform evolution. Nature Magazine, 1992(7):516-519. ] | |
[8] | Benguigui L, Czamanski D, Marinov M , et al. When and where is a city fractal?[J]. Environment & Planning B Planning & Design, 2000,27(4):507-519. |
[9] | Frankhauser P, Tannier C, Vuidel G , et al. An integrated multifractal modelling to urban and regional planning[J]. Computers, Environment and Urban Systems, 2018,67:132-146. |
[10] | Chen Yanguang . Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality[J]. Chaos Solitons & Fractals, 2009,40(4):1766-1778. |
[11] | Chen Yanguang . Multifractals of central place systems: Models, dimension spectrums, and empirical analysis[J]. Physica A: Statistical Mechanics & Its Applications, 2014,402:266-282. |
[12] | 岳文泽, 徐建华, 颉耀文 . 甘肃城镇体系结构及其分形模型研究[J]. 地域研究与开发, 2004,23(1):16-20. |
[ Yue Wenze, Xu Jianhua, Xie Yaowen . A study on urban system structure and its fractal model in Gansu Province of China. Area Research and Development, 2004,23(1):16-20. ] | |
[13] | 周峰, 吕慧华, 许有鹏 . 城镇化下平原水系变化及河网连通性影响研究[J]. 长江流域资源与环境, 2017,26(3):402-409. |
[ Zhou Feng, Lv Huihua, Xu Youpeng . Change of river structure and river network connectivity in the plain river network area. Resources and Environment in the Yangtze Basin, 2017,26(3):402-409. ] | |
[14] | 陈彦光, 刘继生 . 中心地体系与水系分形结构的相似性分析: 关于人-地对称关系的一个理论探讨[J]. 地理科学进展, 2001,20(1):81-88. |
[ Chen Yanguang, Liu Jisheng . Studies of analogies of fractal structure between river networks and systems of central places: A theoretical approach to the symmetry between physical and human geographical systems. Progress in Geography, 2001,20(1):81-88. ] | |
[15] | 鲍超, 贺东梅 . 京津冀城市群水资源开发利用的时空特征与政策启示[J]. 地理科学进展, 2017,36(1):58-67. |
[ Bao Chao, He Dongmei . Spatiotemporal characteristics of water resources exploitation and policy implications in the Beijing-Tianjin-Hebei Urban Agglomeration. Progress in Geography, 2017,36(1):58-67. ] | |
[16] | 文魁, 祝尔娟 , 等. 京津冀发展报告: 承载力测度与对策 [M]. 北京: 社会科学文献出版社, 2013: 155-195. |
[ Wen Kui, Zhu Erjuan , et al. Annual report on Beijing-Tianjin-Hebei metropolitan region development. Beijing, China: Social Sciences Academic Press, 2013: 155-195. ] | |
[17] | 徐涵秋 . 基于压缩数据维的城市建筑用地遥感信息提取[J]. 中国图象图形学报, 2005,10(2):223-229. |
[ Xu Hanqiu . Remote sensing information extraction of urban built-up land based on a data-dimension compression technique. Journal of Image and Graphics, 2005,10(2):223-229. ] | |
[18] | 徐涵秋 . 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595. |
[ Xu Hanqiu . A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI). Journal of Remote Sensing, 2005,9(5):589-595. ] | |
[19] | 徐涵秋, 杜丽萍 . 遥感建筑用地信息的快速提取[J]. 地球信息科学学报, 2010,12(4):574-579. |
[ Xu Hanqiu, Du Liping . Fast extraction of built-up land information from remote sensing imagery. Journal of Geo-information Science, 2010,12(4):574-579. ] | |
[20] | 刘志国, 王恩德, 付建飞 , 等. 河北平原地下水水位的时空变异[J]. 东北大学学报(自然科学版), 2007,28(5):717-720. |
[ Liu Zhiguo, Wang Ende, Fu Jianfei , et al. Spatio-temporal variability of groundwater level in China's Hebei Plain. Journal of Northeastern University (Natural Science), 2007,28(5):717-720. ] | |
[21] | Halsey T C, Jensen M H, Kadanoff L P , et al. Fractal measures and their singularities: The characterization of strange sets[J]. Physical Review A, 1986,33(2):1141-1151. |
[22] | Hentschel H G E, Procaccia I . The infinite number of generalized dimensions of fractals and strange attractors[J]. Physica D: Nonlinear Phenomena, 1983,8(3):435-444. |
[23] | Chhabra A, Jensen R V . Direct determination of the f(α) singularity spectrum[J]. Physical Review Letters, 1989,62(12):1327-1330. |
[24] | White R, Engelen G . Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land-use patterns[J]. Environment and Planning A, 1993,25(8):1175-1199. |
[25] | White R, Engelen G . Urban systems dynamics and cellular automata: Fractal structures between order and chaos[J]. Chaos Solitons & Fractals, 1994,4(4):563-583. |
[26] | 陈彦光, 刘继生 . 城市形态分维测算和分析的若干问题[J]. 人文地理, 2007,22(3):98-103. |
[ Chen Yanguang, Liu Jisheng . On fractal dimension calculation and analysis of urban form. Human Geography, 2007,22(3):98-103. ] | |
[27] | Chen Yanguang, Huang Linshan . A scaling approach to evaluating the distance exponent of the urban gravity model[J]. Chaos Solitons & Fractals, 2018,109:303-313. |
[28] | Chen Yanguang, Lin Jingyi . Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals[J]. Chaos Solitons & Fractals, 2009,41(2):615-629. |
[29] | 赵静湉 . 京津冀城镇用地形态的时空演化分析[D]. 北京: 北京大学, 2017. |
[ Zhao Jingtian . Analysis on spatio-temporal evolution of urban land-use in the region of Beijing, Tianjin and Hebei. Beijing, China: Peking University, 2017. ] | |
[30] | 刘继生, 陈彦光 . 河南省城镇体系空间结构的多分形特征及其与水系分布的关系探讨[J]. 地理科学, 2003,23(6):713-720. |
[ Liu Jisheng, Chen Yanguang . Multifractal measures based on man-land relationships of the spatial structure of the urban system in Henan. Scientia Geographica Sinica, 2003,23(6):713-720. ] | |
[31] | Sun Xia, Chen Huiping, Wu Ziqin , et al. Multifractal analysis of Hang Seng index in Hong Kong stock market[J]. Physica A: Statistical Mechanics and Its Applications, 2001,291(1-4):553-562. |
[32] | Sun Xia, Chen Huiping, Yuan Yongzhuang , et al. Predictability of multifractal analysis of Hang Seng stock index in Hong Kong[J]. Physica A: Statistical Mechanics and Its Applications, 2001,301(1-4):473-482. |
[33] | 封志明, 刘登伟 . 京津冀地区水资源供需平衡及其水资源承载力[J]. 自然资源学报, 2006,21(5):689-699. |
[ Feng Zhiming, Liu Dengwei . A study on water resources carrying capacity in Jingjinji region. Journal of Natural Resources, 2006,21(5):689-699. ] | |
[34] | 吴雷, 许有鹏, 徐羽 , 等. 平原水网地区快速城市化对河流水系的影响[J]. 地理学报, 2018,73(1):104-114. |
[ Wu Lei, Xu Youpeng, Xu Yu , et al. Impact of rapid urbanization on river system in a river network plain. Acta Geographica Sinica, 2018,73(1):104-114. ] | |
[35] | 周洪建, 史培军, 王静爱 , 等. 近30年来深圳河网变化及其生态效应分析[J]. 地理学报, 2008,63(9):969-980. |
[ Zhou Hongjian, Shi Peijun , Wang Jing'ai, et al. River network change and its ecological effects in Shenzhen region in recent 30 years. Acta Geographica sinica, 2008,1(9):969-980. ] | |
[36] | 李雪, 叶思源, 宋凡 , 等. 京津冀平原区地下水水位变化主导因素的定量识别研究[J]. 水文, 2018,38(1):21-27. |
[ Li Xue, Ye Siyuan, Song Fan , et al. Quantitative identification of major factors affecting groundwater change in Beijing-Tianjin-Hebei Plain. Journal of China Hydrology, 2018,38(1):21-27. ] | |
[37] | Rifkin J, Howard T. Entropy: A new world view [M]. New York, USA: Viking Press, 1980. |
[38] | Ryabko B Y . Noise-free coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity[J]. Problemy Peredachi Informatsii, 1986,22(3):16-26. |
[39] | 陈彦光 . 分形城市系统: 标度、对称和空间复杂性 [M]. 北京: 科学出版社, 2008: 281-373. |
[ Chen Yanguang. Fractal urban systems: Scaling, symmetry, spatial complexity. Beijing, China: Science Press, 2008: 281-373. ] | |
[40] | 李婧 . 海绵城市视角下城市水系规划编制方法的探索[J]. 城市规划, 2018,42(6):106-110. |
[ Li Jing . Exploration on urban waterway planning methodology from the perspective of sponge city. City Planning Review, 2018,42(6):106-110. ] | |
[41] | 匡耀求, 黄宁生 . 中国水资源利用与水环境保护研究的若干问题[J]. 中国人口·资源与环境, 2013,23(4):29-33. |
[ Kuang Yaoqiu, Huang Ningsheng . Several issues about the research on the water resources utilization and water environment protection in China. China Population, Resources and Environment, 2013,23(4):29-33. ] |
[1] | 鲍艳磊, 吴朝阳, 郑东博. 大气污染对京津冀地区夏季植被生长峰值的影响[J]. 地理科学进展, 2023, 42(6): 1124-1138. |
[2] | 孙铁山, 刘禹圻. 京津冀城市工业对雾霾污染影响的溢出效应——基于制造业投资城市网络的视角[J]. 地理科学进展, 2023, 42(2): 237-248. |
[3] | 鲁嘉颐, 孙东琪. “本地和非本地”的北京企业联系:时空格局与影响因素[J]. 地理科学进展, 2022, 41(7): 1168-1182. |
[4] | 詹子歆, 戴林琳. 行政边界对城市群交界地区土地利用变化的影响——以通州—武清—廊坊地区为例[J]. 地理科学进展, 2022, 41(12): 2271-2285. |
[5] | 钟若嵋, 文小航, 徐晨晨. 基于高分辨率模式的京津冀地区无人机航路风向风速模拟分析[J]. 地理科学进展, 2021, 40(9): 1528-1539. |
[6] | 姚亭亭, 刘苏峡. 京津冀水资源利用多效率指标的变化特征比较[J]. 地理科学进展, 2021, 40(7): 1195-1207. |
[7] | 蒋海兵, 李业锦. 京津冀地区制造业空间格局演化及其驱动因素[J]. 地理科学进展, 2021, 40(5): 721-735. |
[8] | 黄宇金, 孙威. 京津冀地区制造业集聚的时空演化特征和差异性分析[J]. 地理科学进展, 2021, 40(12): 2011-2024. |
[9] | 赵磊, 谢丰, 徐晨晨, 钟若嵋, 文小航. 京津冀地区无人机航路气象因子高分辨率模拟分析[J]. 地理科学进展, 2021, 40(10): 1691-1703. |
[10] | 卢明华, 周悦颜, 刘汉初, 许欣. 北京企业对河北直接投资的时空动态特征及影响因素[J]. 地理科学进展, 2020, 39(3): 389-401. |
[11] | 罗奎, 李广东, 劳昕. 京津冀城市群产业空间重构与优化调控[J]. 地理科学进展, 2020, 39(2): 179-194. |
[12] | 刘骁啸, 吴康. 功能疏解背景下京津冀中部核心区产业投资网络演化研究[J]. 地理科学进展, 2020, 39(12): 1972-1984. |
[13] | 付慧, 刘艳军, 孙宏日, 周国磊. 京津冀地区耕地利用转型时空分异及驱动机制[J]. 地理科学进展, 2020, 39(12): 1985-1998. |
[14] | 牛强, 沈英杰, 周燚, 黄经南, 王盼. 基于滞后变量模型的城市群建设用地增长对经济增长的滞后期和效应分析——以京津冀城市群为例[J]. 地理科学进展, 2020, 39(10): 1656-1666. |
[15] | 石晓雪, 龚道溢, 胡毅鸿. 1979—2017年冬半年京津冀区域大风的变化及其环流背景分析[J]. 地理科学进展, 2019, 38(7): 1069-1079. |
|