地理科学进展 ›› 2018, Vol. 37 ›› Issue (1): 66-78.doi: 10.18306/dlkxjz.2018.01.008
朱阿兴1,2,3,4,5,6(), 杨琳3,7,*(
), 樊乃卿3, 曾灿英1, 张甘霖8
收稿日期:
2018-01-16
修回日期:
2018-01-18
出版日期:
2018-01-28
发布日期:
2018-01-28
作者简介:
作者简介:朱阿兴,男,浙江长兴人,教授,从事地理信息科学基础理论研究及其在数字土壤制图中的应用,E-mail:
基金资助:
A-Xing ZHU1,2,3,4,5,6(), Lin YANG3,7,*(
), Naiqing FAN3, Canying ZENG1, Ganlin ZHANG8
Received:
2018-01-16
Revised:
2018-01-18
Online:
2018-01-28
Published:
2018-01-28
Supported by:
摘要:
土壤的空间分布是土壤形成与发展过程的体现。数字土壤制图是一种新兴的、高效表达土壤空间分布的技术方法,在过去的30年取得了飞速发展。其理论基础为土壤成土因子学说和地理学第一定律。国内外学者在获取环境变量数据、采样方法、制图模型方法和土壤图产生及评价方面开展了大量的研究,应用案例也从小范围到大区域,甚至是全球尺度。未来数字土壤制图的发展方向包括:环境变量刻画的新技术,特别是体现人类活动方面的环境因子;新型数据和遗留数据的有效利用;土壤发生学知识与数学模型的紧密结合的新型推理方法;支持大数据多终端的计算模式。
朱阿兴, 杨琳, 樊乃卿, 曾灿英, 张甘霖. 数字土壤制图研究综述与展望[J]. 地理科学进展, 2018, 37(1): 66-78.
A-Xing ZHU, Lin YANG, Naiqing FAN, Canying ZENG, Ganlin ZHANG. The review and outlook of digital soil mapping[J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 66-78.
[92] |
Qin C Z, Zhu A-X, Qiu W L, et al.2012. Mapping soil organic matter in small low-relief catchments using fuzzy slope position information[J]. Geoderma, 171-172: 64-74.
doi: 10.1016/j.geoderma.2011.06.006 |
[93] |
Qin C Z, Zhu A-X, Shi X, et al.2009. Quantification of spatial gradation of slope positions[J]. Geomorphology, 110(3-4): 152-161.
doi: 10.1016/j.geomorph.2009.04.003 |
[94] |
Reza Pahlavan Rad M, Toomanian N, Khormali F, et al.2014. Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran[J]. Geoderma, 232-234: 97-106.
doi: 10.1016/j.geoderma.2014.04.036 |
[95] |
Rossel R A V, Fouad Y, Walter C.2008. Using a digital camera to measure soil organic carbon and iron contents[J]. Biosystems Engineering, 100(2): 149-159.
doi: 10.1016/j.biosystemseng.2008.02.007 |
[96] | Roudier P, Hewitt A E, Beaudette D E.2012. A conditioned Latin hypercube sampling algorithm incorporating operational constraints[M]//Minasny B, Malone B P, McBratney A B. Digital soil assessments and beyond: Proceedings of the 5th global workshop on digital soil mapping. London, UK: CRC Press, 227-232. |
[97] |
Russo D.1984. Design of an optimal sampling network for estimating the variogram[J]. Soil Science Society of America Journal, 48(4): 708-716.
doi: 10.2136/sssaj1984.03615995004800040054x |
[98] | Sacks J, Schiller S.1988. Spatial designs//Gupta S S, Berger J O. Statistical decision theory and related topics IV: Vol. 2. New York: Springer Verlag: 385-399. |
[99] |
Shi Z, Ji W, Viscarra Rossel R A, et al.2015. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library[J]. European Journal of Soil Science, 66(4): 679-687.
doi: 10.1111/ejss.12272 |
[100] |
Simbahan G C, Dobermann A.2006. Sampling optimization based on secondary information and its utilization in soil carbon mapping[J]. Geoderma, 133(3-4): 345-362.
doi: 10.1016/j.geoderma.2005.07.020 |
[101] |
Song X D, Brus D J, Liu F, et al.2016. Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China[J]. Geoderma, 261: 11-22.
doi: 10.1016/j.geoderma.2015.06.024 |
[102] |
Song X D, Liu F, Ju B, et al.2017. Mapping soil organic carbon stocks of northeastern China using expert knowledge and GIS-based methods[J]. Chinese Geographical Science, 27(4): 516-528.
doi: 10.1007/s11769-017-0869-7 |
[103] |
Stein A, Hoogerwerf M, Bouma J.1988. Use of soil-map delineations to improve (co-) kriging of point data on moisture deficits[J]. Geoderma, 43(2-3): 163-177.
doi: 10.1016/0016-7061(88)90041-9 |
[104] |
Stoorvogel J J, Bakkenes M, Temme A J A M, et al.2017. S-world: A Global soil map for environmental modelling[J]. Land Degradation & Development, 28(1): 22-33.
doi: 10.1002/ldr.2656 |
[105] |
Stumpf F, Schmidt K, Behrens T, et al.2016. Incorporating limited field operability and legacy soil samples in a hypercube sampling design for digital soil mapping[J]. Journal of Plant Nutrition and Soil Science, 179(4): 499-509.
doi: 10.1002/jpln.201500313 |
[1] | 邓红眉. 2013. 江汉平原土壤中、小尺度下的空间分异研究[D]. 武汉: 华中师范大学. |
[Deng H M.2013. Study on spatial heterogeneity of soil in mesoscale and small scale in Jianghan Plain[D]. Wuhan, China: Central China Normal University.] | |
[2] | 郭龙, 张海涛, 陈家赢, 等. 2012. 基于协同克里格插值和地理加权回归模型的土壤属性空间预测比较[J]. 土壤学报, 49(5): 1037-1042. |
[Guo L, Zhang H T, Chen J Y, et al.2012. Comparison between Co-Kriging model and geographically weighted regression model in spatial prediction of soil attributes[J]. Acta Pedologica Sinica, 49(5): 1037-1042.] | |
[106] |
Tobler W R.1970. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 46(S1): 234-240.
doi: 10.2307/143141 |
[107] | Trochim W M K. 2006. The qualitative debate: Research methods knowledge base[R/OL]. New York, NY: Cornell University, . |
[3] | 韩宗伟, 黄魏, 张春弟, 等. 2014. 基于土壤养分—景观关系的土壤采样布局合理性研究[J]. 华中农业大学学报, 33(1): 56-61. |
[Han Z W, Huang W, Zhang C D, et al.2014. Rationality of sampling strategies based on soil-landscape relationships[J]. Journal of Huazhong Agricultural University, 33(1): 56-61.] | |
[108] |
van Groenigen J W, Stein A.1998. Constrained optimization of spatial sampling using continuous simulated annealing[J]. Journal of Environmental Quality, 27: 1078-1086.
doi: 10.2134/jeq1998.00472425002700050013x |
[109] |
Wang D C, Zhang G L, Pan X Z, et al.2012. Mapping soil texture of a plain area using fuzzy-c-means clustering method based on land surface diurnal temperature difference[J]. Pedosphere, 22(3): 394-403.
doi: 10.1016/S1002-0160(12)60025-3 |
[4] |
黄魏, 罗云, 汪善勤, 等. 2016. 基于传统土壤图的土壤—环境关系获取及推理制图研究[J]. 土壤学报, 53(1): 72-80.
doi: 10.11766/trxb201503260023 |
[Huang W, Luo Y, Wang S Q, et al.2016. Knowledge of soil-landscape model obtain from a soil map and mapping[J]. Acta Pedologica Sinica, 53(1): 72-80.]
doi: 10.11766/trxb201503260023 |
|
[110] |
Wang J F, Li L F, Christakos G.2009. Sampling and kriging spatial means: Efficiency and conditions[J]. Sensors, 9(7): 5224-5240.
doi: 10.3390/s90705224 pmid: 22346694 |
[111] |
Wang J F, Robert H, Liu T J, et al.2013. Sandwich estimation for multi-unit reporting on a stratified heterogeneous surface[J]. Environment and Planning A, 45(10): 2515-2534.
doi: 10.1068/a44710 |
[112] |
Wang K, Zhang C R, Li W D.2013. Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging[J]. Applied Geography, 42: 73-85.
doi: 10.1016/j.apgeog.2013.04.002 |
[113] |
Warrick A W, Myers D E.1987. Optimization of sampling locations for variogram calculations[J]. Water Resources Research, 23(3): 496-500.
doi: 10.1029/WR023i003p00496 |
[5] | 李天杰, 赵烨, 张科利, 等. 2004. 土壤地理学[M]. 3版. 北京: 高等教育出版社. |
[Li T J, Zhao Y, Zhang K L, et al.2004. Turang dilixue[M]. 3rd ed. Beijing, China: Higher Edudation Press.] | |
[6] | 刘峰, 朱阿兴, 李宝林, 等. 2009. 利用陆面反馈动态模式来识别土壤类型的空间差异[J]. 土壤通报, 40(3): 501-508. |
[114] | Webster R.1977. Quantitative and numerical methods in soil classification and survey[M]. Oxford, England: Oxford University Press. |
[115] | Webster R, Oliver M A.1990. Statistical methods in soil and land resource survey[M]. Oxford, England: Oxford University Press. |
[6] | [Liu F, Zhu A X, Li B L, et al.2009. Identification of spatial difference of soil types using land surface feedback dynamic patterns[J]. Chinese Journal of Soil Science, 40(3): 501-508.] |
[7] | 刘京, 朱阿兴, 张淑杰, 等. 2013. 基于样点个体代表性的大尺度土壤属性制图方法[J]. 土壤学报, 50(1): 12-20. |
[116] |
Webster R, Oliver M A.1992. Sample adequately to estimate variograms of soil properties[J]. European Journal of Soil Science, 43(1): 177-192.
doi: 10.1111/j.1365-2389.1992.tb00128.x |
[117] |
Wilding L P, Jones R B, Schafer G M.1965. Variation of soil morphological properties within miami, Celina, and Crosby mapping units in West-Central Ohio[J]. Soil Science Society of America Journal, 29(6): 711-717.
doi: 10.2136/sssaj1965.03615995002900060033x |
[7] | [Liu J, Zhu A X, Zhang S J, et al.2013. Large-scaled soil attribute mapping method based on individual representativeness of sample sites[J]. Acta Pedologica Sinica, 50(1): 12-20.] |
[8] |
秦承志, 卢岩君, 邱维理, 等. 2010. 模糊坡位信息在精细土壤属性空间推测中的应用[J]. 地理研究, 29(9): 1706-1714.
doi: 10.11821/yj2010090016 |
[118] |
Yang L, Brus D J, Zhu A X, et al.2018. Accounting for access costs in validation of soil maps: A comparison of design-based sampling strategies[J]. Geoderma, 315: 160-169.
doi: 10.1016/j.geoderma.2017.11.028 |
[119] |
Yang L, Jiao Y, Fahmy S, et al.2011. Updating conventional soil maps through digital soil mapping[J]. Soil Science Society of America Journal, 75(3): 1044-1053.
doi: 10.2136/sssaj2010.0002 |
[8] |
[Qin C Z, Lu Y J, Qiu W L, et al.2010. Application of fuzzy slope positions in predicting spatial distribution of soil property at finer scale[J]. Geographical Research, 29(9): 1706-1714.]
doi: 10.11821/yj2010090016 |
[9] | 瞿明凯, 李卫东, 张传荣, 等. 2014. 地理加权回归及其在土壤和环境科学上的应用前景[J]. 土壤, 46(1): 15-22. |
[Qu M K, Li W D, Zhang C R.2014. Geographically weighted regression and its application prospect in soil and environmental sciences[J]. Soils, 46(1): 15-22.] | |
[10] | 史舟, 郭燕, 金希, 等. 2011. 土壤近地传感器研究进展[J]. 土壤学报, 48(6): 1274-1281. |
[120] |
Yang L, Qi F, Zhu A X, et al.2016. Evaluation of integrative hierarchical stepwise sampling for digital soil mapping[J]. Soil Science Society of America Journal, 80(3): 637-651.
doi: 10.2136/sssaj2015.08.0285 |
[121] |
Yang L, Zhu A X, Qi F, et al.2013. An integrative hierarchical stepwise sampling strategy for spatial sampling and its application in digital soil mapping[J]. International Journal of Geographical Information Science, 27(1): 1-23.
doi: 10.1080/13658816.2012.658053 |
[10] | [Shi Z, Guo Y, Jin X, et al.2011. Advancement in study on proximal soil sensing[J]. Acta Pedologica Sinica, 48(6): 1274-1281.] |
[11] | 宋敏, 杨琳, 朱阿兴, 等. 2017. 轮作模式在农耕区土壤有机质推测制图中的应用[J]. 土壤通报, 48(4): 778-785. |
[122] |
Yang Q Y, Luo W Q, Jiang Z C, et al.2016. Improve the prediction of soil bulk density by cokriging with predicted soil water content as auxiliary variable[J]. Journal of Soils and Sediments, 16(1): 77-84.
doi: 10.1007/s11368-015-1193-4 |
[123] |
Zeng C Y, Yang L, Zhu A X, et al.2016. Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method[J]. Geoderma, 281: 69-82.
doi: 10.1016/j.geoderma.2016.06.033 |
[11] | [Song M, Yang L, Zhu A X, et al.2017. Mapping soil organic matter in farming areas with crop rotation[J]. Chinese Journal of Soil Science, 48(4): 778-785.] |
[12] | 王会肖, 张超. 2007. 利用MATLAB研究土壤水分空间变异初探[J]. 中国生态农业学报, 15(1): 127-130. |
[124] |
Zeng C Y, Zhu A X, Liu F, et al.2017. The impact of rainfall magnitude on the performance of digital soil mapping over low-relief areas using a land surface dynamic feedback method[J]. Ecological Indicators, 72: 297-309.
doi: 10.1016/j.ecolind.2016.08.023 |
[125] |
Zhang C S, Tang Y, Xu X L, et al.2011. Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland[J]. Applied Geochemistry, 26(7): 1239-1248.
doi: 10.1016/j.apgeochem.2011.04.014 |
[126] |
Zhang S J, Zhu A X, Liu J, et al.2016. An heuristic uncertainty directed field sampling design for digital soil mapping[J]. Geoderma, 267: 123-136.
doi: 10.1016/j.geoderma.2015.12.009 |
[127] |
Zhao M S, Rossiter D G, Li D C, et al.2014. Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index[J]. Ecological Indicators, 39: 120-133.
doi: 10.1016/j.ecolind.2013.12.015 |
[12] | [Wang H X, Zhang C.2007. Studies on spatial variability of soil water with Matlab[J]. Chinese Journal of Eco-Agriculture, 15(1): 127-130.] |
[13] | 王劲峰, 姜成晟, 李连发, 等. 2009. 空间抽样与统计推断[M]. 北京: 科学出版社. |
[128] |
Zhu A X.1997. A similarity model for representing soil spatial information[J]. Geoderma, 77(2-4): 217-242.
doi: 10.1016/S0016-7061(97)00023-2 |
[129] |
Zhu A X.2000. Mapping soil landscape as spatial continua: the neural network approach[J]. Water Resources Research, 36(3): 663-677.
doi: 10.1029/1999WR900315 |
[13] | [Wang J F, Jiang C S, Li L F, et al.2009. Kongjian chouyang yu tongji tuiduan[M]. Beijing, China: Science Press.] |
[14] | 杨琳. 2006. 基于模糊c均值聚类提取土壤—环境系知识的方法研究[D]. 北京:北京师范大学. |
[130] |
Zhu A X, Band L E.1994. A knowledge-based approach to data integration for soil mapping[J]. Canadian Journal of Remote Sensing, 20(4): 408-418.
doi: 10.1080/07038992.1994.10874583 |
[131] |
Zhu A X, Band L, Vertessy R, et al.1997. Derivation of soil properties using a soil land inference model (SoLIM)[J]. Soil Science Society of America Journal, 61(2): 523-533.
doi: 10.2136/sssaj1997.03615995006100020022x |
[14] | [Yang L.2006. Jiyu mohu c junzhi julei tiqu turang: Huanjingxi zhishi de fangfa yanjiu[D]. Beijing, China: Beijing Normal University.] |
[15] | 杨琳. 2009. 目的性采样下样本设计与制图精度的关系研究: 以数字土壤制图为例[D]. 北京: 中国科学院地理科学与资源研究所. |
[132] |
Zhu A X, Hudson B, Burt J E, et al.2001. Soil mapping using GIS, expert knowledge, and fuzzy logic[J]. Soil Science Society of America Journal, 65(5): 1463-1472.
doi: 10.2136/sssaj2001.6551463x |
[133] |
Zhu A X, Liu F, Li B L, et al.2010. Differentiation of soil conditions over low relief areas using feedback dynamic patterns[J]. Soil Science Society of America Journal, 74(3): 861-869.
doi: 10.2136/sssaj2008.0411 |
[15] | [Yang L.2009. Mudexing caiyang xia yangben sheji yu zhitu jingdu de guanxi yanjiu: Yi shuzi turang zhitu weili[D]. Beijing, China: Institute of Geographical Sciences and Natural Resources Research, CAS.] |
[16] |
杨琳, 朱阿兴, 秦承志, 等. 2010. 基于典型点的目的性采样设计方法及其在土壤制图中的应用[J]. 地理科学进展, 29(3): 279-286.
doi: 10.11820/dlkxjz.2010.03.004 |
[Yang L, Zhu A X, Qin C Z, et al.2010. A purposive sampling design method based on typical points and its application in soil mapping[J]. Progress in Geography, 29(3): 279-286.]
doi: 10.11820/dlkxjz.2010.03.004 |
|
[17] | 杨琳, 朱阿兴, 秦承志, 等. 2011. 一种基于样点代表性等级的土壤采样设计方法[J]. 土壤学报, 48(5): 938-946. |
[134] |
Zhu A X, Liu J, Du F, et al.2015. Predictive soil mapping with limited sample data[J]. European Journal of Soil Science, 66(3): 535-547.
doi: 10.1111/ejss.12244 |
[135] | Zhu A X, Yang L, English E, et al.2008. Purposive sampling for digital soil mapping under fuzzy logic[C]//Proceedings of 2007 International Annual Meeting. New Orleans, Louisiana: ASA. |
[17] | [Yang L, Zhu A X, Qin C Z, et al.2011. A soil sampling method based on representativeness grade of sampling points[J]. Acta Pedologica Sinica, 48(5): 938-946.] |
[18] | 杨奇勇, 杨劲松, 刘广明. 2011. 土壤速效养分空间变异的尺度效应[J]. 应用生态学报, 22(2): 431-436. |
[Yang Q Y, Yang J S, Liu G M.2011. Scale-dependency of spatial variability of soil available nutrients[J]. Chinese Journal of Applied Ecology, 22(2): 431-436.] | |
[19] |
张黎明, 林金石, 史学正, 等. 2011. 中国水稻土氮密度变异性的幅度效应研究[J]. 生态环境学报, 20(1): 1-6.
doi: 10.3969/j.issn.1674-5906.2011.01.001 |
[Zhang L M, Lin J S, Shi X Z, et al.2011. The effect of different extents on variation of nitrogen density of paddy soils in China[J]. Ecology and Environmental Sciences, 20(1): 1-6.]
doi: 10.3969/j.issn.1674-5906.2011.01.001 |
|
[20] | 朱阿兴, 李宝林, 裴韬, 等. 2008. 精细数字土壤普查模型与方法[M]. 北京: 科学出版社. |
[Zhu A X, Li B L, Pei T, et al.2008. Jingxi shuzi turang pucha moxing yu fangfa[M]. Beijing, China: Science Press.] | |
[21] | 朱鹤健, 陈健飞, 陈松林, 等. 2010. 土壤地理学[M]. 2版. 北京: 高等教育出版社. |
[Zhu H J, Chen J F, Chen S L, et al.2010. Turang dilixue[M]. 2nd ed. Beijing, China: Higher Education Press.] | |
[22] |
Behrens T, Schmidt K, Ramirez-Lopez L, et al.2014. Hyper-scale digital soil mapping and soil formation analysis[J]. Geoderma, 213: 578-588.
doi: 10.1016/j.geoderma.2013.07.031 |
[23] |
Bell J C, Cunningham R L, Havens M W.1992. Calibration and validation of a soil-landscape model for predicting soil drainage class[J]. Soil Science Society of America Journal, 56(6): 1860-1866.
doi: 10.2136/sssaj1992.03615995005600060035x |
[24] |
Bell J C, Cunningham R L, Havens M W.1994. Soil drainage class probability mapping using a soil-landscape model[J]. Soil Science Society of America Journal, 58(2): 464-470.
doi: 10.2136/sssaj1994.03615995005800020031x |
[25] | Besson A, Cousin I, Richard G, et al.2010. Changes in field soil water tracked by electrical resistivity[M]//Viscarra Rossel R A, McBratney A B, Minasny B. Proximal soil sensing. Dordrecht, Netherlands: Springer. |
[26] | Bezdek J C.1981. Cluster validity[M]//Bezdek J C. Pattern recognition with fuzzy objective function algorithms. Boston, MA: Springer. |
[27] |
Bishop T F A, McBratney A B, Laslett G M.1999. Modelling soil attribute depth functions with equal-area quadratic smoothing splines[J]. Geoderma, 91(1-2): 27-45.
doi: 10.1016/S0016-7061(99)00003-8 |
[28] |
Blaszczynski J S.1997. Landform characterization with geographic information systems[J]. Photogrammetric Engineering and Remote Sensing, 53(2): 183-191.
doi: 10.1016/S0031-0182(97)81130-3 |
[29] | Boettinger J L.2010. Environmental covariates for digital soil mapping in the Western USA[M]//Boettinger J L, Howell D W, Moore A C, et al. Digital soil mapping: Bridging research, environmental application, and operation. Dordrecht, Netherlands: Springer. |
[30] |
Brus D J.1994. Improving design-based estimation of spatial means by soil map stratification: A case study of phosphate saturation[J]. Geoderma, 62(1-3): 33-246.
doi: 10.1016/0016-7061(94)90038-8 |
[31] |
Brus D J, Bogaert P, Heuvelink G B M.2008. Bayesian maximum entropy prediction of soil categories using a traditional soil map as soft information[J]. European Journal of Soil Science, 59(2): 166-177.
doi: 10.1111/j.1365-2389.2007.00981.x |
[32] |
Brus D J, Heuvelink G B M.2007. Optimization of sample patterns for universal kriging of environmental variables[J]. Geoderma, 138(1-2): 86-95.
doi: 10.1016/j.geoderma.2006.10.016 |
[33] |
Brus D J, Kempen B, Heuvelink G B M.2011. Sampling for validation of digital soil maps[J]. European Journal of Soil Science, 62(3): 394-407.
doi: 10.1111/j.1365-2389.2011.01364.x |
[34] |
Burgess T M, Webste R.1980. Optimal interpolation and isarithmic mapping of soil properties[J]. Journal of Soil Science, 31(2): 333-341.
doi: 10.1111/j.1365-2389.1980.tb02085.x |
[35] |
Burrough P A, 1989. Fuzzy mathematical methods for soil survey and land evaluation[J]. European Journal of Soil Science, 40(3): 477-492.
doi: 10.1111/j.1365-2389.1989.tb01290.x |
[36] |
Chang C-W, Laird D A, Mausbach M J, et al.2001. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 65(2): 480-490.
doi: 10.2136/sssaj2001.652480x |
[37] |
Clifford D, Payne J E, Pringle M J, et al.2014. Pragmatic soil survey design using flexible Latin hypercube sampling[J]. Computers & Geosciences, 67: 62-68.
doi: 10.1016/j.cageo.2014.03.005 |
[38] |
Davies B E, Gamm S A.1970. Trend surface analysis applied to soil reaction values from Kent, England[J]. Geoderma, 3(3): 223-231.
doi: 10.1016/0016-7061(70)90022-4 |
[39] | de Gruijter J J, Bierkens M F P, Brus D J, et al.2006. Sampling for natural resource monitoring[M]. Berlin, Germany: Springer-Verlag: 331. |
[40] |
Dobos E, Montanarella L, Nègre T, et al.2001. A regional scale soil mapping approach using integrated AVHRR and DEM data[J]. International Journal of Applied Earth Observation and Geoinformation, 3(1): 30-42.
doi: 10.1016/S0303-2434(01)85019-4 |
[41] |
Dunn J C.1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 3(3): 32-57.
doi: 10.1080/01969727308546046 |
[42] | Fayyad U, Piatetsky-Shapiro G, Smyth P.1996. From data mining to knowledge discovery in databases[M]//Piatetsky-Shapiro G. Advances in knowledge discovery and data mining. Menlo Park: AAAI Press, 37. |
[43] |
Gao B B, Pan Y C, Chen Z Y, et al.2016. A spatial conditioned Latin hypercube sampling method for mapping using ancillary data[J]. Transactions in GIS, 2016, 20(5): 735-754. doi: 10.1111/tgis.12176.
doi: 10.1111/tgis.12176 |
[44] |
Godinho Silva S H, Owens P R, De Menezes M D, et al.2014. A technique for low cost soil mapping and validation using expert knowledge on a watershed in Minas Gerais, Brazil[J]. Soil Science Society of America Journal, 78(4): 1310-1319.
doi: 10.2136/sssaj2013.09.0382 |
[45] |
Godinho Silva S H, Owens P R, Silva B M, et al.2015. Evaluation of conditioned Latin hypercube sampling as a support for soil mapping and spatial variability of soil properties[J]. Soil Science Society of America Journal, 79(2): 603-611.
doi: 10.2136/sssaj2014.07.0299 |
[46] |
Goovaerts P.1999. Geostatistics in soil science: State-of-the-art and perspectives[J]. Geoderma, 89(1-2): 1-45.
doi: 10.1016/S0016-7061(98)00078-0 |
[47] |
Goulard M, Voltz M.1992. Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix[J]. Mathematical Geology, 24(3): 269-286.
doi: 10.1007/BF00893750 |
[48] |
Gray J M, Bishop T F A, Wilford J R.2016. Lithology and soil relationships for soil modelling and mapping[J]. CATENA, 147: 429-440.
doi: 10.1016/j.catena.2016.07.045 |
[49] |
Grimm R, Behrens T, Märker M, et al.2008. Soil organic carbon concentrations and stocks on Barro Colorado Island: Digital soil mapping using Random Forests analysis[J]. Geoderma, 146(1-2): 102-113.
doi: 10.1016/j.geoderma.2008.05.008 |
[50] |
Guo S X, Meng L K, Zhu A-X, et al.2015. Data-gap filling to understand the dynamic feedback pattern of soil[J]. Remote Sensing, 7(9): 11801-11820.
doi: 10.3390/rs70911801 |
[51] |
Guo S X, Zhu A-X, Meng L K, et al.2016. Unification of soil feedback patterns under different evaporation conditions to improve soil differentiation over flat area[J]. International Journal of Applied Earth Observation and Geoinformation, 49: 126-137.
doi: 10.1016/j.jag.2016.02.002 |
[52] |
Hallema D W, Lafond J A, Périard Y, et al.2015. Long-term effects of peatland cultivation on soil physical and hydraulic properties: Case study in Canada[J]. Vadose Zone Journal, 14(6): 1-12.
doi: 10.2136/.vzj14.10.0147 |
[53] |
Hengl T, de Jesus J M, Heuvelink G B M, et al.2017. SoilGrids250m: Global gridded soil information based on machine learning[J]. PLoS One, 12(2): e0169748, doi: 10.1371/journal.pone.0169748.
doi: 10.1371/journal.pone.0169748 pmid: 5313206 |
[54] |
Hengl T, de Jesus J M, MacMillan R A, et al.2014. SoilGrids1km: Global soil information based on automated mapping[J]. PLoS One, 9(8): e105992.
doi: 10.1371/journal.pone.0105992 |
[55] |
Hengl T, Gruber S, Shrestha D P.2004. Reduction of errors in digital terrain parameters used in soil-landscape modelling[J]. International Journal of Applied Earth Observation and Geoinformation, 5(2): 97-112.
doi: 10.1016/j.jag.2004.01.006 |
[56] |
Hengl T, Heuvelink G B M, Kempen B, et al.2015. Mapping soil properties of africa at 250 m resolution: Random forests significantly improve current predictions[J]. PLoS One, 10(6): e0125814.
doi: 10.1371/journal.pone.0125814 pmid: 4482144 |
[57] |
Hengl T, Heuvelink G B M, Rossiter D G.2007. About regression-kriging: From equations to case studies[J]. Computers & Geosciences, 33(10): 1301-1315.
doi: 10.1016/j.cageo.2007.05.001 |
[58] |
Hudson B D.1992. The soil survey as paradigm-based science[J]. Soil Science Society of America Journal, 56(3): 836-841.
doi: 10.2136/sssaj1992.03615995005600030027x |
[59] |
Hughes J P, Lettenmaier D P.1981. Data requirements for kriging: Estimation and network design[J]. Water Resources Research, 17(6): 1641-1650.
doi: 10.1029/WR017i006p01641 |
[60] |
Hutchinson M F.1995. Interpolating mean rainfall using thin plate smoothing splines[J]. International Journal of Geographical Information Systems, 9(4): 385-403.
doi: 10.1080/02693799508902045 |
[61] | Isaaks E H, Srivastava R M.1989. Applied geostatistics[M]. New York, NY: Oxford University Press. |
[62] | Jenny H.1941. Factors of soil formation: A system of quantitative pedology[M]. New York, NY: McGraw-Hill. |
[63] |
Juang K W, Liao W J, Liu T L, et al.2008. Additional sampling based on regulation threshold and Kriging variance to reduce the probability of false delineation in a contaminated site[J]. Science of the Total Environment, 389(1): 20-28.
doi: 10.1016/j.scitotenv.2007.08.025 pmid: 17888495 |
[64] |
Kempen B, Brus D J, Heuvelink G B M, et al.2009. Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach[J]. Geoderma, 151(3-4): 311-326.
doi: 10.1016/j.geoderma.2009.04.023 |
[65] |
Knotters M, Brus D J, Oude Voshaar J H.1995. A Comparison of kriging, co-kriging and kriging combined with regression for spatial Interpolation of horizon depth with censored observations[J]. Geoderma, 67(3-4): 227-246.
doi: 10.1016/0016-7061(95)00011-C |
[66] |
Kumar S, Lal R, Liu D S.2012. A geographically weighted regression kriging approach for mapping soil organic carbon stock[J]. Geoderma, 189-190: 627-634.
doi: 10.1016/j.geoderma.2012.05.022 |
[67] |
Lagacherie P, McBratney A B.2006. Chapter 1 Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping[J]. Developments in Soil Science, 31: 3-22.
doi: 10.1016/S0166-2481(06)31001-X |
[68] |
Li J, Heap A D.2011. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors[J]. Ecological Informatics, 6(3): 228-241.
doi: 10.1016/j.ecoinf.2010.12.003 |
[69] |
Li J, Heap A D.2014. Spatial interpolation methods applied in the environmental sciences: A review[J]. Environmental Modelling & Software, 53: 173-189.
doi: 10.1016/j.envsoft.2013.12.008 |
[70] |
Li Y, Zhu A-X, Shi Z, et al.2016. Supplemental sampling for digital soil mapping based on prediction uncertainty from both the feature domain and the spatial domain[J]. Geoderma, 284: 73-84.
doi: 10.1016/j.geoderma.2016.08.013 |
[71] |
Loague K.1992. Soil water content at R-5: Part 1. Spatial and temporal variability[J]. Journal of Hydrology, 139(1-4): 233-251.
doi: 10.1016/0022-1694(92)90204-9 |
[72] |
MacMillan R A, Pettapiece W W, Nolan S C, et al.2000. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic[J]. Fuzzy Sets and Systems, 113(1): 81-109.
doi: 10.1016/S0165-0114(99)00014-7 |
[73] |
Malone B P, de Gruijter J J, McBratney A B, et al.2011. Using additional criteria for measuring the quality of predictions and their uncertainties in a digital soil mapping framework[J]. Soil Science Society of America Journal, 75(3): 1032-1043.
doi: 10.2136/sssaj2010.0280 |
[74] |
Matheron G.1963. Principles of geostatistics[J]. Economic Geology, 58(8): 1246-1266.
doi: 10.2113/gsecongeo.58.8.1246 |
[75] |
McBratney A B, Hart G A, McGarry D.1991. The use of region partitioning to improve the representation of geo statistically mapped soil attributes[J]. Journal of Soil Science, 42(3): 513-532.
doi: 10.1111/j.1365-2389.1991.tb00427.x |
[76] |
McBratney A B, Mendonça Santos M L, Minasny B.2003. On digital soil mapping[J]. Geoderma, 117(1-2): 3-52.
doi: 10.1016/S0016-7061(03)00223-4 |
[77] |
McBratney A B, Odeh I O A, Bishop T F A, et al.2000. An overview of pedometric techniques for use in soil survey[J]. Geoderma, 97(3-4): 293-327.
doi: 10.1016/S0016-7061(00)00043-4 |
[78] |
McBratney A B, Webster R.1983. Optimal interpolation and isarithmic mapping of soil properties: V. Co-regionalization and multiple sampling strategy[J]. Journal of Soil Science, 34(1): 137-162.
doi: 10.1111/ejs.1983.34.issue-1 |
[79] |
McKenzie N J, Ryan P J.1999. Spatial prediction of soil properties using environmental correlation[J]. Geoderma, 89(1-2): 67-94.
doi: 10.1016/S0016-7061(98)00137-2 |
[80] | McSweeney K, Slater B K, Hammer R D, et al.1994. Towards a new framework for modeling the soil-landscape continuum[M]//Amundson R R, Harden J, Singer M. Factors of soil formation: A fiftieth anniversary retrospective. Madison, WI: Soil Science Society of America, 127-145. |
[81] |
Miller B A, Koszinski S, Wehrhan M, et al.2015. Impact of multi-scale predictor selection for modeling soil properties[J]. Geoderma, 239-240: 97-106.
doi: 10.1016/j.geoderma.2014.09.018 |
[82] |
Minasny B, McBratney A B.2006. Latin hypercube sampling as a tool for digital soil mapping[J]. Developments in Soil Science, 31: 153-165, 606.
doi: 10.1016/S0166-2481(06)31012-4 |
[83] |
Mondal A, Khare D, Kundu S, et al.2017. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data[J]. The Egyptian Journal of Remote Sensing and Space Science, 20(1): 61-70.
doi: 10.1016/j.ejrs.2016.06.004 |
[84] |
Moore I D, Gessler P E, Nielsen G A, et al.1993. Soil attribute prediction using terrain analysis[J]. Soil Science Society of America Journal, 57(2): 443-452.
doi: 10.2136/sssaj1993.03615995005700020026x |
[85] |
Mulder V L, de Bruin S, Schaepman M E.2013. Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data[J]. International Journal of Applied Earth Observation and Geoinformation, 21: 301-310.
doi: 10.1016/j.jag.2012.07.004 |
[86] | Myers D B, Kitchen N R, Sudduth K A, et al.2010. Combining proximal and penetrating soil electrical conductivity sensors for high-resolution digital soil mapping[M]//Viscarra Rossel R A, McBratney A B, Minasny B. Proximal soil sensing. Dordrecht, Netherlands: Springer. |
[87] |
Nemes A, Rawls W J, Pachepsky Y A.2006. Use of the nonparametric nearest neighbor approach to estimate soil hydraulic properties[J]. Soil Science Society of America Journal, 70(2): 327-336.
doi: 10.2136/sssaj2005.0128 |
[88] |
Odeh I O A, McBratney A B, Chittleborough D J.1994. Spatial prediction of soil properties from landform attributes derived from a digital elevation model[J]. Geoderma, 63(3-4): 197-214.
doi: 10.1016/0016-7061(94)90063-9 |
[89] |
Odeh I O A, McBratney A B, Chittleborough D J.1995. Further results on prediction of soil properties from terrain attributes-heterotopic cokriging and regression-kriging[J]. Geoderma, 67(3-4): 215-226.
doi: 10.1016/0016-7061(95)00007-B |
[90] |
Park S J, Vlek P L G.2002. Environmental correlation of three-dimensional soil spatial variability: A comparison of three adaptive techniques[J]. Geoderma, 109(1-2): 117-140.
doi: 10.1016/S0016-7061(02)00146-5 |
[91] |
Qi F, Zhu A X.2003. Knowledge discovery from soil maps using inductive learning[J]. International Journal of Geographical Information Science, 17(8): 771-795.
doi: 10.1080/13658810310001596049 |
No related articles found! |
|