地理科学进展 ›› 2012, Vol. 31 ›› Issue (11): 1510-1518.doi: 10.11820/dlkxjz.2012.11.012
彭琴1, 齐玉春1, 董云社1, 何亚婷1, 刘欣超1, 孙良杰1, 贾军强1, 金钊2
收稿日期:
2012-01-01
修回日期:
2012-06-01
出版日期:
2012-11-25
发布日期:
2012-11-25
作者简介:
彭琴(1978-),女,湖北黄冈人,助理研究员,主要从事全球变化与陆地生态系统碳氮元素生物地球化学循环过程研究.E-mail: pengqin@igsnrr.ac.cn
基金资助:
国家自然科学基金项目(40973057,41073061);中国科学院知识创新工程重要方向项目(KZCX2-EW-302);农业部公益性行业科研专项(201203012).
PENG Qin1, QI Yuchun1, DONG Yunshe1, HE Yating1, LIU Xinchao1, SUN Liangjie1, JIA Junqiang1, JIN Zhao2
Received:
2012-01-01
Revised:
2012-06-01
Online:
2012-11-25
Published:
2012-11-25
摘要: 未来全球气候变化背景下,全球或局部地区的降雨量及降雨时间分布将发生一定的变化.草地生态系统在全球碳收支中作用显著,对气候变化的反馈起着重要的作用.但由于草地多处于干旱半干旱地区,受到水分条件的限制,对降雨变化响应敏感,其碳源汇功能表现出很大的不确定性.为了更好地预测未来全球气候变化背景下草地的碳源汇功能及其对气候变化的进一步反馈,有必要深入研究决定草地碳源汇功能的两大碳循环关键过程——净初级生产力和土壤呼吸对降雨变化的响应特征及机制.本文对国内外有关草地生产力和土壤呼吸如何对降雨量、降雨强度、降雨频率和间隔时间进行响应的相关研究成果进行了综述,在此基础上指出了目前研究存在的不足,并对未来相关的重点研究方向进行了探讨和展望.
彭琴, 齐玉春, 董云社, 何亚婷, 刘欣超, 孙良杰, 贾军强, 金钊. 干旱半干旱地区草地碳循环关键过程对降雨变化的响应[J]. 地理科学进展, 2012, 31(11): 1510-1518.
PENG Qin, QI Yuchun, DONG Yunshe, HE Yating, LIU Xinchao, SUN Liangjie, JIA Junqiang, JIN Zhao. Responses of Carbon Cycling Key Processes to Precipitation Changes in Arid and Semiarid Grassland Ecosystems: A review[J]. PROGRESS IN GEOGRAPHY, 2012, 31(11): 1510-1518.
[1] IPCC. Climate Change 2007: The Physical Science Basis.New York, USA: Cambridge University Press, 2007.[2] IPCC. Climate Change and Water. Cambridge, UK andNew York, USA: Cambridge University Press, 2008.[3] 吴绍洪, 赵宗慈. 气候变化和水的最新科学认知. 气候变化研究进展, 2009, 5(3): 125-133.[4] Easterling D R, Meehl G A, Parmesan C, et al. Climateextremes: Observations, modeling, and impacts. Science,2000, 289(5487): 2068-2074.[5] Karl T R, Trenberth K E. Modern global climate change.Science, 2003, 302(5651): 1719-1723.[6] Allan R P, Soden B J. Atmospheric warming and the amplificationof precipitation extremes. Science, 2008, 321(5895): 1481-1484.[7] Huxman T E, Cable J M, Ignace D D, et al. Response ofnet ecosystem gas exchange to a simulated precipitationpulse in a semi-arid grassland: The role of native versusnon-native grasses and soil texture. Oecologia, 2004, 141(2): 295-305.[8] Huxman T E, Snyder K A, Tissue D, et al. Precipitationpulses and carbon fluxes in semiarid and arid ecosystems.Oecologia, 2004, 141(2): 254-268.[9] Chapin F S, McFarland J, McGuire A D, et al. The changingglobal carbon cycle: Linking plant-soil carbon dynamicsto global consequences. Journal of Ecology, 2009, 97(5): 840-850.[10] 贾丙瑞, 周广胜. 北方针叶林对气候变化响应的研究进展. 地球科学进展, 2009, 24(6): 668-674.[11] 杨昕, 王明星. 陆面碳循环研究中若干问题评述. 地球科学进展, 2001, 16(3): 427-435.[12] Adams J M, Faire H, Faire-Richard L et al. Increases interrestrial carbon storage from the last glacial maximumto the present. Nature, 1990, 348(6303): 711-714.[13] Schuman G, Janzen H, Herrick J. Soil carbon dynamicsand potential carbon sequestration by rangelands. EnvironmentalPollution, 2002, 116(3): 391-396.[14] Fan S, Gloor M, Mahlman J, et al. A large terrestrial carbonsink in North America implied by atmospheric andoceanic carbon dioxide data and models. Science, 1998,282(5388): 442-446.[15] Hunt J E, Kelliher F M, McSeveny T M, et al. Long-termcarbon exchange in a sparse, seasonally dry tussock grassland.Globle Change Biology, 2004, 10(10): 1785-1800.[16] Sims P L, Bradford J A. Carbon dioxide fluxes in a southernplains prairie. Agricultural and Forest Meteorology,2001, 109(2): 117-134.[17] Sundquist E T. The global carbon-dioxide budget. Science,1993, 259(5103): 934-941.[18] Taylor J A, Lloyd J. Sources and sinks of atmosphericCO2. Australian Journal of Botany, 1992, 40(4-5):407-418.[19] Shen W, Jenerette G D, Hui D, et al. Effects of changingprecipitation regimes on dryland soil respiration and Cpool dynamics at rainfall event, seasonal and interannualscales. Journal of Geophysical Research, 2008, 113:G03024.[20] 李博, 雍世鹏, 李瑶, 等. 中国的草原. 北京: 科学出版社, 1990.[21] 阳含熙, 李飞. 生态系统浅说. 北京: 清华大学出版社,2002.[22] 王永明, 韩国栋, 赵萌莉, 等. 草地生态水温过程研究若干进展. 中国草地学报, 2007, 29(3): 98-103.[23] Ciais P, Reichstein M, Viovy N, et al. Europe-wide reductionin primary productivity caused by the heat anddrought in 2003. Nature, 2005, 437(7058): 529-533.[24] Aires L M I, Pio C A, Pereira J S. Carbon dioxide exchangeabove a Mediterranean C3/C4 grassland duringtwo climatologically contrasting years. Global Change Biology,2008, 14(3): 539-555.[25] Nagy Z, Pintér K, Czóbel S Z, et al. The carbon budget ofsemiarid grassland in a wet and a dry year in Hungary.Agriculture, Ecosystems and Environment, 2007, 121(1-2): 21-29.[26] Baldocchi D, Falge E, Gu L, et al. FLUXNET: A newtool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energyflux densities. Bulletin of the American MeteorologicalSociety, 2001, 82(11): 2415-2434.[27] 于贵瑞. 全球变化与陆地生态系统碳循环和碳蓄积. 北京: 气象出版社, 2003: 43-132.[28] 韩士杰, 董云社, 蔡祖聪, 等. 中国陆地生态系统碳循环的生物地球化学过程. 北京: 科学出版社, 2008.[29] Sala O E, Parton W J, Joyce L A, et al. Primary productionof the central grassland region of the United States.Ecology, 1988, 69(1): 40-45.[30] Lauenroth W K, Burke I C, Paruelo J M. Patterns of productionand precipitation-use efficiency of winter wheatand native grasslands in the central Great Plains of theUnited States. Ecosystems, 2000, 3(4): 344-351.[31] Epstein H E, Burke I C, Lauenroth W K. Regional patternsof decomposition and primary production rates inthe US Great Plains. Ecology, 2002, 83(2): 320-327.[32] McCulley R L, Burke I C, Nelson J A, et al. Regional patternsin carbon cycling across the Great Plains of NorthAmerica. Ecosystems, 2005, 8(1): 106-21.[33] Zhou G, Wang Y, Jiang Y, et al. Carbon balance along theNortheast China Transect (NECT-IGBP). Science China:Series C, 2002, 45(Supp.): 18-29.[34] 马文红, 杨元合, 贺金生, 等. 内蒙古温带草地生物量及其与环境因子的关系. 中国科学: C 辑, 2008, 38(S):84-92.[35] Zhou X H, Tallev M, Luo Y Q. Biomass, litter, and soilrespiration along a precipitation gradient in southernGreat Plains, USA. Ecosystems, 2009, 12(8): 1369-1380.[36] Le Houérou H N. Rain use efficiency: A unifying conceptin arid land ecology. Journal of Arid Environments, 1984,7(3): 213-247.[37] 胡中民, 樊江文, 钟华平, 等. 中国温带草地地上生产力沿降水梯度的时空变异性. 中国科学: D 辑, 2006, 36(12): 1154-1162.[38] Huxman T E, Smith M D, Fay P A, et al. Convergenceacross biomes to common rain-use efficiency. Nature,2004, 429(6982): 651-654.[39] 常骏, 王忠武, 李怡, 等. 内蒙古三种草地植物群落地上净初级生产力与水热条件的关系. 内蒙古大学学报: 自然科学版, 2010, 41(6): 689-694.[40] 王玉辉, 周广胜. 内蒙古羊草草原植物群落地上初级生产力时间动态对降水变化的响应. 生态学报, 2004, 24(6): 1140-1145.[41] Went F W, Westergaard M. Ecology of deserts plants.Part 3. Development of plants in the Death Valley NationalMonument, California. Ecology, 1949, 30(1): 26-38.[42] Beatley J C. Phenological events and their environmentaltriggers in Mojave-Desert. Ecosystem Ecology, 1974, 55(1): 856-863.[43] Sala O E, Lauenroth W K. Small rainfall events: An ecologicalrole in semiarid regions. Oecologia, 1982, 53(3):301-304.[44] Goldberg D, Novoplansky A. On the relative importanceof competition in unproductive environments. Journalof Ecology, 1997, 85(4): 409-418.[45] Knapp A K, Fay P A, Blair J M, et al. Rainfall variability,carbon cycling, and plant species diversity in a mesicgrassland. Science, 2002, 298(5601): 2202-2205.[46] Schwinning S, Starr B I, Ehleringer J R. Dominant colddesert shrubs do not partition warm season precipitationby event size. Oecologia, 2003, 136(2): 252-260.[47] Sher A A, Goldberg D E, Novoplansky A. The effect ofmean and variance in resource supply on survival of annualsfrom Mediterranean and desert environments. Oecologia,2004, 141(2): 353-62.[48] Harper C W, Blair J M, Fay P A, et al. Increased rainfallvariability and reduced rainfall amount decreases soilCO2 flux in a grassland ecosystem. Global Change Biology,2005, 11(2): 322-334.[49] Sponseller R A. Precipitation pulses and soil CO2 flux ina Sonoran Desert ecosystem. Global Change Biology,2007, 13(2): 426-436.[50] Thomey M L, Collins S L, Vargas R, et al. Effect of precipitationvariability on net primary production productionand soil respiration in a Chihuahuan Desert grassland.Global Change Biology, 2011, 17(4): 1505-1515.[51] Heisler-White J L, Knapp A K, Kelly E F. Increasing precipitationevent size increases aboveground net primaryproductivity in a semi-arid grassland. Oecologia, 2008,158(1): 129-140.[52] Heisler-White J L, Blair J M, Kelly E F, et al. Contingentproductivity responses to more extreme rainfall regimesacross a grassland biome. Global Change Biology, 2009,15(12): 2894-2904.[53] Williams D G, McPerson G R, Weltzin J F. Stress in wildlandplants: Implications for ecosystem structure andfunction//Pessarakli M. Handbook of Plant and CropStress. New York, USA: Marcel Dekker Inc., 1999: 907-929.[54] Schenk H J, Jackson R B. Rooting depths, lateral rootspreads and below-ground/above-ground allometries ofplants in water-limited ecosystems. Journal of Ecology,2002, 90(3): 480-494.[55] Ogle K, Reynolds J F. Plant responses to precipitation indesert ecosystems: Integrating functional types, pulses,thresholds and delays. Oecologia, 2004, 141(2): 282-294.[56] Schwinning S, Sala O E. Hierarchy of responses to resourcepulses in arid and semi-arid ecosystems. Oecologia,2004, 141(2): 211-220.[57] Cable D R. Influence of precipitation on perennial grassproduction in the semidesert Southwest. Ecology, 1975,56(4): 981-986.[58] WebbW, Szarek S, LauenrothW, et al. Primary productivityand water use in native forest, grassland, and desertecosystems. Ecology, 1978, 59(6): 1239-1247.[59] Smoliak S. Influence of climatic conditions on the productionof Stipa-Bouteloua prairie over a 50-year period.Journal of Range Management, 1986, 39(3): 100-103.[60] Gibbens R P, Beck R F. Changes in grass basal area andforb densities over a 64-year period on grassland types ofthe Jornada experimental range. Journal of Range Management,1988, 41(3): 186-192.[61] Lauenroth W K, Sala O E. Long-term forage productionof North American shortgrass steppe. Ecological Applications,1992, 2(4): 397-405.[62] Dunnett N P, Willis A J, Hunt R, et al. A 38-year study ofrelations between weather and vegetation dynamics inroad verges near Bibury, Gloucestershire. Journal of Ecology,1998, 86(4): 610-623.[63] O’Connor T G, Haines L M, Snyman H A. Influence ofprecipitation and species composition on phytomass of asemi-arid African grassland. Journal of Ecology, 2001, 89(5): 850-860.[64] Schwinning S, Sala O E, Loik M E, et al. Thresholds,memory, and seasonality: Understanding pulse dynamicsin arid/semi-arid ecosystems. Oecologia, 2004, 141(2):191-193.[65] Wiegand T, Snyman H A, Kellner K, et al. Do grasslandshave a memory: Modeling phytomass production of asemiarid South African grassland. Ecosystems, 2004, 7(3): 243-258.[66] 袁文平, 周广胜. 中国东北样带三种针茅草原群落初级生产力对降水季节分配的响应. 应用生态学报, 2005,16(4): 605-609.[67] 李英年, 赵新全, 曹广民, 等. 海北高寒草甸生态系统定位站气候、植被生产力背景的分析. 高原气象, 2004, 23(4): 558- 567.[68] Snyman H A, Fouché H J. Production and water-use efficiencyof semi-arid grasslands of South Africa as affectedby veld conditions and rainfall. Water SA, 1991, 17(4):263-268.[69] Oesterheld M, Loreti J, Semmartin M, et al. Inter annualvariation in primary production of a semi-arid grasslandrelated to previous-year production. Journal of VegetationScience, 2001, 12(1): 137-142.[70] Hansen C L, Wright J R, Smith J P, et al. Use of historicalyield data to forecast range herbage production. Journalof Range Management, 1982, 35(5): 614-616.[71] Yahdjian L, Sala O E. Vegetation structure constrains primaryproduction response to water availability in the Patagoniansteppe. Ecology, 2006, 87(4): 952-962.[72] 杨元合, 朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关系. 植物生态学报, 2006, 30(1): 1-8.[73] Milchunas D G, Lauenroth W K. Belowground primaryproduction by carbon isotope decay and long-term rootbiomass dynamics. Ecosystems, 2001, 4(2): 139-150.[74] 陈佐忠, 黄德华, 张鸿芳. 内蒙古锡林河流域羊草草原与大针茅草原地下生物量与降雨量关系模型探讨//中国科学院内蒙古草原生态系统定位站. 草原生态系统研究. 2 集. 北京: 科学出版社, 1988.[75] Bakker M R, Augusto L, Achat D L. Fine root distributionof trees and understory in mature stands of marinepine (Pinus pinaster) on dry and humid sites. Plant andSoil, 2006, 286(1): 37-51.[76] Qaderi M M, Kurepin L V, Reid D M. Growth and physiologicalresponses of canola (Brasica napus) to three componentsof global climate changes: Temperature, carbondioxide and drought. Physiologia Plantarum, 2006, 128(4): 610-721.[77] 王娓, 彭书时, 方精云. 中国北方天然草地的生物量分配及其对气候的响应. 干旱区研究, 2008, 25(1): 90-97.[78] Wang R Z, Ripley E A, Zu Y G, et al. Demography of reproductiveand biomass allocation of grassland and duneLeymus chinensis on the Songnen Plain, north-easternChina. Journal of Arid Environments, 2001, 49(3):289-299.[79] Wang R Z, Gao Q, Chen Q S. Effects of climatic changeon biomass and biomass allocation in Leymus chinensis(Poaceae) along the North-east China Transect (NECT).Journal of Arid Environments, 2003, 54(4): 653-665.[80] Hui D, Jackson R B. Geographical and interannual variabilityin biomass partitioning in grassland ecosystems: Asynthesis of field data. New Phytologist, 2005, 169(6):58-93.[81] Fiala K, Tuma I, Holub P. Ecosystem-effect of manipulatedrainfall on root production and plant belowground drymass of different grassland ecosystems. Ecosystems,2009, 12(6): 906-914.[82] Peek M S, Leffler A J, Hipps L, et al. Root turnover andrelocation in the soil profile in response to seasonal soilwater variation in a natural stand of Utah juniper (Juniperusosteosperma). Tree Physiology, 2006, 26(11):1469-1476.[83] Yang Y H, Fang J Y, Ma W H, et al. large-scale pattern ofbiomass partitioning across China’s grasslands. GlobalEcology and Biogeography, 2010, 19(2): 268-277.[84] Wang L, Niu K C, Yang Y H, et al. Patterns of above- andbelowground biomass allocation in China’s grasslands:evidence from individual-level observations. Science inChina Series C: Life Sciences, 2010, 53(7): 851-857.[85] Santantonio D, Hermann R K. Standing crop, productionand turnover of fine roots on dry, moderate and wet sitesof mature Douglas-fir in western Oregon. Annals of forestscience, 1985, 42(2): 113-142.[86] Pietikäinen J, Vaijärvi E, Ilvesniemi H, et al. Carbon storageof microbes ad roots and the flux of CO2 across amoisture gradient. Canadian Journal of Forest Research,1999, 29(8): 1197-1203.[87] Mokany K, Raison R J, Peokushkin A S. Critical analysisof root: shoot ratios in terrestrial biomes. Global ChangeBiology, 2006, 12(1): 84-96.[88] Bond-Lamberty B, Wang C K, Gower S T. A global relationshipbetween the heterotrophic and autotrophic componentsof soil respiration? Global Change Biology,2004, 10(10): 1756-1766.[89] 耿元波, 董云社, 齐玉春. 草地生态系统碳循环研究进展. 地理科学进展, 2004, 23(3): 74-81.[90] Shim J H, Pendall E, Morgan J A, et al. Wetting and dryingcycles drive variations in the stable carbon isotope ratioof respired carbon dioxide in semi-arid grassland.Oecologia, 2009, 160(2): 321-333.[91] Wang W, Fang J Y. Soil respiration and human effects onglobal grasslands. Global and Planetary Change, 2009, 67(1): 20-28.[92] 董云社, 齐玉春, 刘纪远, 等. 不同降水强度4 种草地群落土壤呼吸通量变化特征. 科学通报, 2005, 50(5):473-480.[93] Fierer N, Schimel J P. A proposed mechanism for thepulse in carbon dioxide production commonly observedfollowing the rapid rewetting of a dry soil. Soil ScienceSociety of America Journal, 2003, 67(3): 798-805.[94] Holt J A, Hodgen M J, Lamb D. Soil respiration in theseasonally dry tropics near Townsville. NorthQueensland. Australian Journal of Soil Research, 1990,28(5): 737-745.[95] Medina E, Zelwer M. Soil respiration in tropical plantcommunities//Golley P M, Golley F B. Proceedings ofthe Second International Symposium of Tropical Ecology.Athens, Georgia: University of Geogia Press, 1972:245-269.[96] Clein J, Schimel J P. Reduction in microbial activity inbirch litter due to drying and rewetting events. Soil Biologyand Biochemistry, 1994, 26(3): 403-406.[97] Franzluebbers A J, Stuedemann J A, Schomberg H H, etal. Soil organic C and N pools under long-term pasturemanagement in the Southern Piedmont USA. Soil Biologyand Biochemistry, 2000, 32(4): 469-478.[98] Xu L, Baldocchl D D, Tang J. How soil moisture, rainpulses, and growth alter the response of ecosystem respirationto temperature. Global Biogeochemical Cycles,2004, 18: GB4002.[99] Norton U, Mosier A R, Morgan J A, et al. Moisture pulses,trace gas emissions and soil C and N in cheat grassand native grass-dominated sagebrush-steppe in Wyoming,USA. Soil Biology and Biochemistry, 2008, 40(6):1421-1431.[100] Casals P, Lopez-Sangil L, Carrara A, et al. Autotrophicand heterotrophic contributions to short-term soil CO2 effluxfollowing simulated summer precipitation pulses ina Mediterranean dehesa. Global Biogeochemical Cycles,2011, 25: GB3012.[101] Liu X, Wan S, Su B, et al. Responses of soil CO2 effluxto water manipulation in a tallgrass prairie ecosystem.Plant and Soil, 2002, 240(2): 213-223.[102] 吴琴, 曹广民, 胡启武, 等. 矮嵩草草甸植被-土壤系统CO2的释放特征. 资源科学, 2005, 27(2): 96-102.[103] Bouma T J, Bryla D R. On the assessment of root andsoil respiration for soils of different textures: Interactionswith soil moisture contents and soil CO2 concentrations.Plant and Soil, 2000, 227(1-2): 215-221.[104] Fierer N, Schimel J P. Effects of drying-rewetting frequencyon soil carbon and nitrogen transformations. SoilBiology and Biochemistry, 2002, 34(6): 777-787.[105] van GestelM,Merckx R, Vlassak K. Microbial biomass responsesto soil drying and rewetting: The fate of fast- andslow-growing microorganisms in soils from different climates.Soil Biology and Biochemistry, 1993, 25(1):109-123.[106] Halverson L J, Jones T M, Firestone M K. Release of in-tracellular solutes by four soil bacteria exposed to dilutionstress. Soil Science Society of America Journal,2000, 4(5): 1630-1637.[107] Cable J M, Ogle K, Williams D G, et al. Soil texturedrives responses of soil respiration to precipitation pulsesin the Sonoran Desert: Implications for climate change.Ecosystems, 2008, 11(6): 961-979.[108] Xu Z, Zhou G, Shimizu H. Are plant growth and photosynthesislimited by predrought following rewatering ingrass? Journal of Experimental Botany, 2009, 60(13):3737-3749.[109] Chen S, Lin G, Huang J, et al. Dependence of carbon sequestrationon the differential responses of ecosystem photosynthesisand respiration to rain pulses in a semiaridsteppe. Global Change Biology, 2009, 15(10): 2450-2461.[110] Luo Y, Zhou X. Soil Respiration and the Environment.London: Elsevier, 2006.[111] Austin A T, Yahdjian L, Stark J M, et al. Water pulsesand biogeochemical cycles in arid and semiarid ecosystems.Oecologia, 2004, 141(2): 221-235.[112] Kurc S A, Small E E. Soil moisture variations and ecosystemscale fluxes of water and carbon in semiarid grasslandand shrubland. Water Resources Research, 2007, 43(6):W06416.[113] Högberg P, Nordgren A, Buchmann N, et al. Large-scaleforest girdling shows that current photosynthesis drivessoil respiration. Nature, 2001, 411(6839): 789-792.[114] Reynolds J F, Kemp P R, Ogle K, et al. Modifying the“pulse-reserve”paradigm for deserts of North America:precipitation pulses, soil water, and plant responses.Oecologia, 2004, 141(2): 194-210.[115] Muldavin E H, Moore D I, Collins S L, et al. Abovegroundnet primary production dynamics in a northern ChihuahuanDesert ecosystem. Oecologia, 2008, 155(1):123-132. |
[1] | 王守兴, 徐增让, 乔添, 张彪, 魏子谦, 杨明新. 基于草地承载力的畜兽冲突强度研究[J]. 地理科学进展, 2023, 42(11): 2186-2197. |
[2] | 张燕杰, 武俊喜, 潘影, 张宪洲. 净初级生产力的人类占用研究进展[J]. 地理科学进展, 2022, 41(2): 341-350. |
[3] | 许瀚卿, 谭金凯, 李梦雅, 刘青, 王军. 中国沿海地区雨潮复合灾害联合分布及危险性研究[J]. 地理科学进展, 2022, 41(10): 1859-1867. |
[4] | 殷水清, 王文婷. 土壤侵蚀研究中降雨过程随机模拟综述[J]. 地理科学进展, 2020, 39(10): 1747-1757. |
[5] | 董晓宇, 姚华荣, 戴君虎, 朱梦瑶. 2000—2017年内蒙古荒漠草原植被物候变化及对净初级生产力的影响[J]. 地理科学进展, 2020, 39(1): 24-35. |
[6] | 丁凯熙, 张利平, 宋晓猛, 佘敦先, 夏军. 北京地区汛期降雨时空演变特征及城市化影响研究[J]. 地理科学进展, 2019, 38(12): 1917-1932. |
[7] | 刘希林. 全球视野下崩岗侵蚀地貌及其研究进展[J]. 地理科学进展, 2018, 37(3): 342-351. |
[8] | 洪长桥, 金晓斌, 陈昌春, 王慎敏, 杨绪红, 项晓敏. 集成遥感数据的陆地净初级生产力估算模型研究综述[J]. 地理科学进展, 2017, 36(8): 924-939. |
[9] | 盛贺伟, 孙莉英, 蔡强国. 黄土坡面片蚀过程稳定含沙量及其影响因素[J]. 地理科学进展, 2016, 35(8): 1008-1016. |
[10] | 吴致蕾, 刘峰贵, 张镱锂, 陈琼, 周强, 杨登兴. 清代青藏高原东北部河湟谷地林草地覆盖变化[J]. 地理科学进展, 2016, 35(6): 768-778. |
[11] | 马文勇, 王训明. 基于高光谱分析的草地叶绿素含量估算研究进展[J]. 地理科学进展, 2016, 35(1): 25-34. |
[12] | 方欧娅, 汪洋, 邵雪梅. 基于树轮资料重建森林净初级生产力的研究进展[J]. 地理科学进展, 2014, 33(8): 1039-1046. |
[13] | 李相虎, 张奇, 邵敏. 基于TRMM数据的鄱阳湖流域降雨时空分布特征及其精度评价[J]. 地理科学进展, 2012, 31(9): 1164-1170. |
[14] | 陈春阳, 陶泽兴, 王焕炯, 戴君虎. 三江源地区草地生态系统服务价值评估[J]. 地理科学进展, 2012, 31(7): 978-984. |
[15] | 孙良杰, 齐玉春, 董云社, 彭琴, 何亚婷, 刘欣超, 贾军强, 曹丛丛. 全球变化对草地土壤微生物群落多样性的影响研究进展[J]. 地理科学进展, 2012, 31(12): 1715-1723. |
|