地理科学进展  2016 , 35 (7): 889-897 https://doi.org/10.18306/dlkxjz.2016.07.010

研究综述

风暴潮灾害脆弱性研究综述

石先武1, 国志兴1, 张尧1, 方佳毅2, 胡可嘉3, 刘钦政1

1. 国家海洋局海洋减灾中心,北京 100194
2. 北京师范大学减灾与应急管理研究院,北京 100875
3. 浙江大学海洋学院,浙江 舟山 316021

A review of research on vulnerability to storm surges

SHI Xianwu1, GUO Zhixing1, ZHANG Yao1, FANG Jiayi2, HU Kejia3, LIU Qinzheng1

1. National Marine Hazard Mitigation Service, Beijing 100194, China
2. Academy of Disaster Reduction and Emergency Management, Ministry of Civil Affairs & Ministry of Education, Beijing Normal University, Beijing 100875, China
3. Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China

收稿日期: 2016-01-20

修回日期:  2016-05-20

网络出版日期:  2016-07-20

版权声明:  2016 地理科学进展 《地理科学进展》杂志@版权所有

基金资助:  基金项目:国家自然科学基金项目(41501560);海洋公益性行业科研专项项目(201505018,201305020)

作者简介:

作者简介:石先武(1986-),男,湖北大冶人,助研,主要从事风暴潮灾害风险评估研究,E-mail: xianwu.shi@mail.bnu.edu.cn

展开

摘要

脆弱性是自然灾害风险研究的热点,风暴潮灾害脆弱性与风暴潮自然过程强度以及沿海社会经济、人口、自然环境等因素相关。本文从风暴潮灾害脆弱性定义出发,对国内外风暴潮灾害社会脆弱性和物理脆弱性进行了回顾,重点对人口、海堤、房屋等风暴潮灾害典型承灾体物理脆弱性研究进展进行了论述,分析了风暴潮灾害脆弱性评价中存在的不确定性,探讨了风暴潮灾害脆弱性在灾害损失评估、保险及再保险、防灾减灾决策支持等领域的应用,对未来风暴潮灾害脆弱性研究提出了以下展望:①开发符合中国沿海区域风暴潮灾害特征和承灾体分布的定量化、精细化脆弱性曲线,拓展风暴潮脆弱性评价结果在保险理赔、灾害损失评估等领域应用;②气候变化背景下中国沿海面临风暴潮巨灾风险,迫切需要建立科学的基于灾害实地踏勘以及物模实验、数值模拟相结合的风暴潮灾害典型承灾体脆弱性评估方法模型。

关键词: 风暴潮 ; 社会脆弱性 ; 物理脆弱性 ; 不确定性 ; 综述

Abstract

Vulnerability is a hot topic in natural disaster risk research. Vulnerability to storm surges not only depends on the distribution of population and socioeconomic values, but also the frequency and intensity of storm surges, as well as the coastal environment. This article systematically reviewed the progress of research on social vulnerability and physical vulnerability to storm surges, focusing mainly on the physical vulnerability of population, coastal defenses, and buildings. Uncertainties in vulnerability assessment were analyzed, and the application of storm surge vulnerability assessment in the field of rapid loss assessment, insurance, reinsurance, and disaster mitigation and adaptation were discussed. Finally, future avenues of storm surge vulnerability research were presented: (1) Quantitative storm surge vulnerability curves of typical exposure units need to be developed for application in the field of disaster insurance claims and loss assessment; (2) Standardized vulnerability assessment method of storm surge for typical exposure units needs to be established through field survey, physical experiments, and numerical simulation in response to the potential increase of catastrophe risk in the coastal area of China under global climate change.

Keywords: storm surge ; social vulnerability ; physical vulnerability ; uncertainty ; review

0

PDF (1037KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

石先武, 国志兴, 张尧, 方佳毅, 胡可嘉, 刘钦政. 风暴潮灾害脆弱性研究综述[J]. , 2016, 35(7): 889-897 https://doi.org/10.18306/dlkxjz.2016.07.010

SHI Xianwu, GUO Zhixing, ZHANG Yao, FANG Jiayi, HU Kejia, LIU Qinzheng. A review of research on vulnerability to storm surges[J]. 地理科学进展, 2016, 35(7): 889-897 https://doi.org/10.18306/dlkxjz.2016.07.010

1 引言

中国地处西北太平洋西岸,大陆海岸线超过18000 km,是世界上受风暴潮灾害影响最严重的国家之一。风暴潮灾害给中国沿海带来严重的人员伤亡和财产损失,2006年,0608号超强台风“桑美”在浙江省苍南县马站镇登陆,恰逢天文大潮期,引发的特大风暴潮灾害造成浙江、福建两省230人死亡,直接经济损失超过70亿元(国家海洋局, 2007)。2014年的超强台风“威马逊”是近40年以来登陆海南最强台风,引发的风暴潮灾害造成海南、广东、广西三省经济损失超过80亿元(国家海洋局, 2015b)。中国也是世界上少有的同时受台风风暴潮和温带风暴潮灾害影响的国家,沿海区域从南到北都发生过风暴潮灾害,沿海平均每年约9个台风登陆(石先武等, 2015),多数会造成风暴潮灾害;北部渤海湾、莱州湾沿岸等经常遭受温带风暴潮袭击。随着中国海洋经济的快速发展和沿海地区工业化和城镇化的进程加快,人口密度和社会财富急剧增加,同时受全球气候变化和海平面上升的影响,引发风暴潮的天气过程呈增强趋势,沿海风暴潮灾害风险不确定性增大(宋城城等, 2014)。科学认识风暴潮灾害成灾机制、脆弱性特点及其风险,对提高中国沿海风暴潮灾害防灾减灾能力具有重要的实际意义。

近年来,脆弱性成为国内外自然灾害学领域研究的重点和热点。不同领域间研究对象和学科视角不同,对脆弱性概念的界定角度和方式有很大差异,以致脆弱性具有不同的内涵和外延(方修琦等, 2007)。风暴潮灾害受灾区域主要在沿海,特殊的孕灾环境和承灾对象导致风暴潮的脆弱性特点及其分布与其他自然灾害有显著差别。风暴潮灾害自然过程、致灾机理的研究在过去20年取得了极大进展,国内外研发了一批成熟的风暴潮灾害数值预报模式,用于灾害预警报和危险性评估,但对于风暴潮灾害脆弱性的研究还不够深入和系统(宋学家等, 2005)。本文从脆弱性的定义出发,综述了风暴潮灾害社会脆弱性和物理脆弱性的国内外相关研究进展,重点针对人口、房屋、海堤等典型承灾体物理脆弱性进行了分析,探讨了风暴潮灾害脆弱性在保险及再保险、快速损失评估、防灾减灾辅助决策支持等领域的应用,并对风暴潮灾害脆弱性亟需解决的问题和未来研究的重点进行了展望。

2 脆弱性的定义

联合国国际减灾战略(UNISDR)减轻灾害术语中将脆弱性定义为:社区、系统或财产的属性和环境受到致灾因子破坏的程度(United Nations International Strategy for Disaster Reduction, 2009),认为脆弱性和各种自然、社会、经济以及环境等因子有关,并且具有一定的时间和空间属性。Adger(2006)对脆弱性的概念进行了系统梳理,并提出脆弱性研究中主要面临脆弱性的度量、如何处理人类感知的风险以及适应性协调管理等3个挑战。脆弱性的研究从仅关注承灾体敏感性的单一结构,逐渐发展为综合考虑承灾体暴露性及系统适应能力等在内的多元结构。IPCC第五次工作报告认为,脆弱性是自然社会系统易受不利影响的倾向或习性,以及对环境的敏感性、应对和适应能力,对脆弱性的内涵和外延进行了扩充,强调了所处的情景以及灾害造成的影响(Stocker et al, 2013)。由于研究背景和关注对象不同,对脆弱性的认识也不一致。本文从灾害研究角度出发,将脆弱性分为社会脆弱性和物理脆弱性两大类(Füssel, 2007; Thomas et al, 2013),其中社会脆弱性是针对社会系统而言,表现为社会系统响应灾害的能力;物理脆弱性针对承灾个体(海堤、房屋等)而言,表现为灾害造成的承灾体损失或损失率(石勇等, 2011)。

风暴潮灾害承灾体的脆弱性、致灾因子危险性、海岸带承灾体的暴露性及其孕灾环境共同构成风暴潮灾害系统。风暴潮灾害的脆弱性是社会、经济、自然与环境和风暴潮灾害系统本身相互作用的综合结果,作用的承灾体包括沿海人口、房屋、堤防、农作物及其他植被、养殖区、船舶航运、港口码头及其他防灾工程设施等,风暴潮灾害脆弱性大小客观反映了沿岸承灾体对风暴潮灾害的抗打击能力。风暴潮灾害脆弱性评估在风暴潮灾害风险评估中起着桥梁纽带作用(图1),基于社会脆弱性的风暴潮灾害定性或半定量风险评估结果主要服务于风暴潮灾害宏观风险管理,而基于风暴潮灾害物理脆弱性的定量风险评估结果在工程防御设计、保险等行业发挥着重要作用,风暴潮灾害定量风险评估也受到越来越多的关注。本文从社会脆弱性和物理脆弱性2个角度对风暴潮灾害脆弱性研究进展进行论述,并且从服务于风暴潮灾害定量风险评估角度出发,对受风暴潮灾害影响的典型承灾体的物理脆弱性进行了重点分析。

图1   风暴潮灾害风险评估框架

Fig.1   A framework of storm surge risk assessment

3 风暴潮灾害社会脆弱性

社会脆弱性与社会、经济、政治、文化等各方面因素相关,是整个社会系统在灾害影响下所表现出来的自然属性(Wisner et al, 2003)。Cutter(1996)对脆弱性等相关概念进行了总结,认为社会脆弱性是特定区域或地理范围内的自然风险与社会响应,强调了社会在准备、应对、恢复和适应灾害展现出的不均衡性。目前,社会脆弱性评估一般采用定量或半定量的评估方法,通过构建指标体系,利用平均权重法、层次分析法、主成分分析法等进行权重的赋值(Li et al, 2011; Yin et al, 2012; 方佳毅等, 2015),最终由多个指标计算得出社会脆弱性指数,用以反映不同区域社会脆弱性的相对等级大小。风暴潮灾害社会脆弱性评价核心在于分析风暴潮灾害对社会、经济、政治、文化等各方面因素的综合影响,如Granger(2003)从社区的社会、经济、文化、建筑等方面选择33个指标建立评价指标体系;Kleinosky等(2007)根据贫穷、移民、老年及残疾人等社会经济情况建立脆弱性指标体系;Rao等(2007)选择不同风暴潮淹没强度区的人口结构、收入水平、防护水平等15个指标建立社会脆弱性的评价指标体系,分别对澳大利亚、美国以及印度洋的孟加拉湾等受风暴潮灾害影响的地区开展社会脆弱性评价。国内学者从社会经济、土地利用、生态环境、滨海构造物、承灾能力、灾损统计指标等方面,结合区域灾害特点建立评价指标体系开展脆弱性评价和分析(殷克东等, 2010; 李阔等, 2011)。上述研究一般以行政区为评价单元,省、市、县不同的行政评价单元所需要的数据精度和可获取性不一样,更小的评价单元如乡(镇)、社区(村),其指标数据获取更为困难,因而使社会脆弱性评价更加注重宏观层面的表达。未来的研究应考虑到中国沿海的特殊情况,例如土地利用变化、人口流动性等因素,从有助于地方防灾减灾决策支持的实际出发,建立可量化的、具有代表性的风暴潮灾害社会脆弱性评价指标体系。

4 风暴潮灾害物理脆弱性

物理脆弱性是指不同致灾强度作用下,承灾体发生损失的可能性大小,是一种微观尺度对承灾体抗灾能力的定量估计(Dilley, 2005)。脆弱性破坏概率矩阵和脆弱性曲线是物理脆弱性最常用的2种表达方式。破坏概率是指在一定致灾因子强度作用下承灾体的损失率,不同等级强度的致灾因子造成的破坏概率即可形成破坏概率矩阵,而不同致灾因子强度对同一破坏状态有多种可能性,可进一步形成更精细化的破坏概率矩阵,常见破坏状态可分为基本完好、轻微破坏、中等破坏和严重破坏等。在国内,对于建筑物、室内财产等承灾体可通过风暴潮灾害现场调查等手段,构建淹没水深—损失率破坏概率矩阵(梁海燕等, 2005; 郑君, 2011)。日本的《风暴潮、海啸风险评估和区划技术手册》通过设定不同淹没水深情景模拟对行人和车辆造成的不同程度影响,构建了风暴潮对行人和车辆的破坏概率矩阵(津波・高潮ハザードマップ研究会事務局, 2003)。

脆弱性曲线作为精细定量的脆弱性评价方法和灾害评估的关键环节,其核心要素是表达致灾因子强度和承灾体脆弱性的定量响应关系,通常可用致灾因子强度与承灾体损失(率)的关系曲线或方程式表示(周瑶等, 2012)。脆弱性曲线按研究对象可分为承灾体的区域脆弱性曲线和单体脆弱性曲线。区域脆弱性曲线多采用致灾因子强度—损失(率)反演方法进行构建,历史灾害案例数据库是构建承灾体区域定量脆弱性曲线的基础。单体脆弱性曲线针对的是单个典型承灾体结构,除基于损失调查数据采用致灾因子强度—损失(率)反演外,还可以采用数值模拟或物理模型试验的方法构建。单体的脆弱性与特定承灾体的结构、性质、形状等因素有关。美国联邦应急署开发的HAZUS多灾种损失评估软件中,同时用破坏概率矩阵和脆弱性曲线来表征各类承灾体的物理脆弱性,将建筑物分为5种破坏状态:完好、轻度损坏、中度损坏、重度损坏、完全损坏,每一种破坏状态都有一条脆弱性经验曲线与之对应,用户只需要根据评估区域实际情况设定脆弱性曲线相关参数即可(Kircher et al, 2006)。此外,当单灾种包含多种致灾因子并且可能同时发生时,单因子脆弱性曲线刻画承灾体物理脆弱性会存在局限性,可通过建立致灾因子的联合概率分布,构建脆弱性曲面,用于表达多种致灾因子影响下承灾体的受损状况(Ming et al, 2015)。

物理脆弱性一般由2个维度构成,一个维度表征危险性指标,风暴潮灾害中代表性指标常采用风暴增水、风暴减水、超警戒潮位、淹没水深、淹没历时、水流流速、水流流向、盐度等,当考虑风暴潮、近岸浪、河道洪水的耦合影响时,需要构建综合性指标;另一个维度表征承灾体的损失(率),常用价值损失(率)或物理损失(率)表征。由于风暴潮灾害历史数据较为有限,因而通过传统的致灾因子强度—灾情损失反演方法构建脆弱性难度较大。除灾害实地调查、历史灾害案例数据库外,另外一个值得关注的是保险公司承保理赔数据,财产保险公司对于每一个保单记录,一般都包含出险原因、损失大小、事故位置、标的价值等信息的详细记录,可据此构建可信度较高的脆弱性曲线。对于风暴潮灾害引起的海岸洪水,许多学者把海岸洪水等同内陆洪水研究洪灾脆弱性曲线(石勇等, 2009),但风暴潮淹没引起的洪水与内陆洪水的破坏因素有2个不同:一是风暴潮导致的海岸洪水中海水含盐可能会导致对海水养殖等承灾体的破坏作用较大,二是风暴潮与近岸浪耦合形成破坏作用使得致灾因子的强度加大,特别是对海堤等防护工程的破坏作用加剧。

4.1 人口

风暴潮灾害因灾死亡人口与风暴潮灾害自然强度、预警时间、区域应急疏散能力以及人口本身脆弱性等多种因素相关(Jonkman, 2007),风暴潮漫堤、溃堤造成的内陆淹没是人口死亡最主要的致灾因子。随着预警报水平的提高和政府部门对防灾减灾的关注,风暴潮灾害因灾死亡人口急剧下降(Shi et al, 2015)。国外针对风暴潮灾害死亡人口脆弱性曲线进行了系统研究,例如Jonkman等研究了洪水灾害人口死亡的脆弱性,针对风暴潮导致的海岸洪水构建了人口死亡率与淹没水深之间的定量关系,认为水流流速、淹没水深是影响人口死亡率最重要的因素:水流流速通过风暴潮数值模式进行刻画,而淹没水深主要是通过灾后现场淹没痕迹测量获取,同时也发现儿童和老年人脆弱性更高、女性脆弱性比男性更高,并通过案例研究表明预警报水平的提升、人员疏散效率对可以显著降低风暴潮灾害人口死亡脆弱性(Jonkman et al, 2003; Jonkman et al, 2008; Jonkman et al, 2009)。Boyd(2005)基于Betsy和Camlle飓风风暴潮灾害灾后调查数据建立了淹没水深与死亡人口的“S”型相关关系曲线,并发现当淹没超过4 m时人口死亡率最高可达总数的1/3。Hossain(2015)则以家庭为单位,分析了孟加拉湾区域沿海国家居民房屋结构、收入水平、受教育程度与风暴潮灾害人口死亡率直接的相关关系。这些研究从避难场所建立、预警报发布、应急疏散等方面提供了许多降低风暴潮灾害人口死亡率的有效措施,而综合考虑人口的年龄结构、性别比例、房屋居住类型、受教育水平等因素可更加合理评估风暴潮灾害导致的死亡人口数量。

4.2 海堤

海堤的抵御能力取决于海堤的结构特性和所处的水动力环境,主要致灾因子为风暴潮、近岸浪及二者的耦合作用。这2个因素直接决定了风暴潮灾害海堤脆弱性的大小,风暴潮灾害过程中越浪量可作为同时考虑了上述2个因素的一个综合指标,越浪量在海堤脆弱性评估中应用最广并对海堤设计起到至关重要的作用(Basco et al, 2004; Pullen et al, 2007)。基于风暴潮灾害越浪过程和越浪量海堤脆弱性评价方法主要有以下3种模型:经验统计模型、数值模型、物理实验模型。经验统计模型是基于实验数据或者野外测量采集数据对主要参数进行拟合进而得出经验公式(Franco et al, 1995; Goda, 2009),其优点是简单直接,通过已知的潮位、浪高和海堤形态,代入经验公式计算越浪量,进而进行安全评价并构建海堤的破坏脆弱性曲线,但经验公式的适用范围和评价结果不确定性较高。随着计算资源的普及,数值模拟方法逐渐演变为一种重要的评估分析工具(Hieu et al, 2014),这种方法的优点在于对复杂的海堤结构、水和建筑物的相互作用、水动力参数都可进行数值模拟和分析。物理模型实验通过设定一定的风暴潮和近岸浪实际情景,按照一定的比例将海堤结构缩放在室内波浪池或者水槽中进行模型试验,这种方法优点在于水动力参数可得到精准的测量,但物模实验的代价较为高昂(Larese et al, 2014; Yuan et al, 2014)。综合考虑准确性和适用范围,物理模型实验通常被用来获取重要的实验参数,同经验统计模型和数值模拟的结果进行比对验证;经验统计模型在海堤工程设计、越浪评估和风险评价上应用最为广泛;而数值模拟通常被广泛用于多种极端海水动力环境下的高效仿真计算,模拟的时间跨度空间跨度大,弥补了物理模型实验在这两方面的局限性。

4.3 房屋

国内外针对房屋的风暴潮灾害脆弱性曲线研究已较为成熟,主要采用淹没水深作为风暴潮灾害危险性指标。美国陆军工程兵团基于美国不同地区发生的洪水(含风暴潮)灾害损失数据,以淹没水深作为致灾强度,建立了一层、多层和错层房屋(有地下室或无地下室)等不同类型房屋内财产的淹没水深与损失率的脆弱性曲线,建模过程中考虑了水流流速、淹没时长、预警时间等变量及其组合的影响(US Army Corps of Engineers, 1993),但通过模型检验发现,仅淹没水深能最有效解释房屋结构和室内财产的损失率。其中,室内财产的损失率由房屋室内财产损害价值与房屋结构价值的比值计算得到。Kato等(2012)基于影响日本沿岸的9918号台风引起的风暴洪水,充分考虑风暴潮淹没水深及持续时间等致灾因子,通过实地踏勘及问卷调查获取淹没水深以及风暴潮灾害损失,分别建立日本Shiranui和Ube 2个城市的房屋和室内设施的淹没水深与损害程度脆弱性曲线。英国Kelman(2002)综合考虑淹没水深和流速,基于灾害现场调查,分析房屋在水动力、静压、侵蚀、浮力等作用下房屋遭受的荷载,建立了英格兰东部沿海风暴潮洪灾32种房屋的二维淹没水深和流速与房屋损害程度的脆弱矩阵。美国Pistrika等(2010)基于Katrina飓风引起的风暴洪水,利用动量定理分析了奥尔良地区淹没水深和流速的统计关系,并以此建立淹没水深和流速与房屋损失率的脆弱性曲线。浙江水利河口研究院基于该省历史上典型的台风风暴潮案例,将河口区财产类型分为7个大类24个小类,分别采用不同的方法计算得到各类财产的风暴潮脆弱性损失矩阵(郑君, 2011)。从国内外研究可以看出,国外风暴潮灾害房屋脆弱性曲线构建较为精细,考虑了房屋结构类型、层级以及有无地下室,并基于多个不同致灾因子对房屋脆弱性进行了定量分析;国内在借鉴国外已有成果基础上,初步构建了风暴潮灾害房屋脆弱性曲线,这些曲线可直接服务于定量评估风暴潮灾害引发的不同房屋结构以及室内财产的损失。

5 风暴潮灾害脆弱性不确定性

不确定性是风暴潮灾害脆弱性评价中客观存在的。风暴潮灾害社会脆弱性评价结果依赖于指标的选取以及模型的计算方式,指标的选择以及各指标赋予权重方式的差异都会对社会脆弱性评价结果产生较大不确定性。对于风暴潮灾害物理脆弱性,具有二阶不确定性。一阶不确定性仅反映脆弱性的概率特征,即不同致灾强度下风暴潮灾害的损失是不一样的,为脆弱性曲线物理特性的体现;而二阶不确定性反映的是脆弱性的模糊特征,即同一致灾强度的风暴潮灾害损失不是固定的,亦具有一定的分布特征(Grossi et al, 2005; Berkes, 2007)。

脆弱性评估中不确定性来源有多种。基于灾害损失数据,无论是通过经验统计模型(致灾因子强度—损失(率)反演),还是通过数值模拟或物理模型试验构建风暴潮灾害脆弱性曲线,所得到的样本群体都具有离散性,一般采用同一致灾强度下的平均损失(率)描述风暴潮灾害脆弱性曲线的一阶不确定性,而偏离平均状态的离散样本反映的二阶不确定性是巨灾风险评估关注的重点,对评估巨灾事件的尾部极端风险具有重要意义(Woo, 2002)。采用经验的统计模型构建脆弱性曲线时,常采用指数、线性、logistic回归等方法,而不同方法的选择以及参数求解方法的不同对脆弱性评估结果都会产生影响。此外,数据来源的精度、可靠性都会对风暴潮灾害社会脆弱性和物理脆弱性评价结果带来不确定性。

6 风暴潮灾害脆弱性评估及应用

风暴潮灾害脆弱性评估结果是灾害损失评估和风暴潮灾害定量风险评估的基础(石先武等, 2013)。政府部门可基于承灾体的区域脆弱性曲线快速估计某次风暴潮灾害过程的价值损失量或物理损失量,便于提供救灾物资储备,直接经济损失快速评估结果也可为保险公司应对单次灾害过程设置理赔准备金提供参考,人口影响定量脆弱性评估结果可直接服务于地方政府在风暴潮灾害期间人员的应急疏散。国家海洋局2012年启动了海洋行业公益专项“海洋灾情快速评估和综合研判系统研发与应用示范”,该项目核心研究内容为:基于灾后现场调查、灾情统计上报以及遥感卫星影像构建受风暴潮及近岸浪影响的人口、渔业、房屋、工程、种植业、直接经济损失等脆弱性评估模型,开发风暴潮灾情评估集成系统对风暴潮及近岸浪灾害进行应急及综合评估,为地方政府应对风暴潮灾害提供快速决策支持。国家海洋局在日本“3.11”地震海啸之后开展了海洋灾害风险评估和区划工作,编制了《风暴潮灾害风险评估和区划技术导则》(国家海洋局, 2015c),并通过试点工作对导则进行了修订,针对风暴潮灾害脆弱性提出了等级评估和定量评估2种方法,为风险评估提供不同的脆弱性评价结果。

脆弱性曲线在灾害保险及再保险中发挥着越来越重要的作用。完整的灾害风险保险模型包括随机事件集模块、致灾因子模块、脆弱性模块、承灾体模块以及金融定价模块,其中脆弱性模块是风险模型核心组成部分,在整个风险模型中起着桥梁链接作用,特别是脆弱性曲线是生成风险曲线的基础(Pendleton et al, 2004)。国际上,再保险公司定期发布各类风险曲线,如劳合社曲线、Salzman曲线(家财险)、瑞再曲线、慕再曲线、Skandia曲线、Ludwig曲线(家财和企财险)等产险风险曲线或曲线族,并根据历史样本事件的不断增加,对脆弱性曲线进行不断修正进而对风险曲线进行重新厘定及不定期更新。如阿姆斯模型公司在台风巨灾风险模型中,考虑淹没水深、淹没持续时间等因素构建了风暴潮灾害物理脆弱性曲线,用于台风—风暴潮灾害损失评估(Wood et al, 2005);美国联邦应急管理署开发的多灾种损失评估软件MH-HAZUS模型在洪水模块中考虑了风暴潮引发沿岸淹没的影响,直接嵌入风暴潮灾害损失的经验脆弱性曲线,综合评估沿海地区洪水及次生灾害的影响(Federal Emergency Management Agency, 2010)。

脆弱性评价在防灾减灾辅助决策支持中正在发挥越来越重要作用,降低脆弱性已成为减轻灾害风险的有效途径。沿海城市发展规划越来越关注降低社会脆弱性的工程性和非工程措施,风暴潮灾害社会脆弱性评价结果可为降低社会脆弱性所需的资本、人力、自然资源等方面的投入提供参考,以提高整个社会系统抵御风暴潮灾害的能力,制定有针对性的风暴潮灾害防灾减灾管理措施。目前已有的工程性防潮措施主要基于重现期水位进行防御标准设计,而基于物理脆弱性评价结果可考虑不同海堤、海塘、防波堤类型以及区域风暴潮灾害特点对防护能力的影响,可对工程性措施的防潮能力作精细化的评估。通过分析海堤等防护工程范围内风暴潮脆弱性变化,以便决策方在工程建设成本和风暴潮防护能力上作综合评估,从而进行效益的最优选择,提高防护工程的减灾效益(浙江省水利河口研究院, 2007)。如基于物理脆弱性评价结果,分析沿海不同地区风暴潮灾害造成的海水网箱养殖设施破坏状态,如锚泊系统绳索断裂、锚和锚墩走位、木质网箱框架断裂等,可以在此基础上提出网箱设施灾后恢复的技术改进建议和减少风暴潮灾害影响的主要对策措施(黄滨等, 2011; 张杰, 2011)。

7 结语和展望

风暴潮灾害脆弱性评估的系统化、定量化、精细化是灾害风险科学研究的热点。社会脆弱性评估的关键和难点在于建立科学合理的评价指标体系、选用适当的综合评价方法,采用合适的分级或分类表达方式,从而实现风暴潮灾害在不同地理单元或空间单元以及不同时间和空间尺度上社会脆弱性的对比(Chen et al, 2013)。通过风暴潮灾害社会脆弱性评估研究可全面了解风暴潮灾害对区域自然、社会、经济、环境等方面的影响及抵御灾害的能力,并为风暴潮灾害风险管理提供科学依据。但若对风暴潮灾害的内在成灾过程不了解,就无法实现对灾害影响的定量评估;而物理脆弱性能定量、精细化地刻画风暴潮灾害典型承灾体损失可能性大小。国外针对风暴潮灾害典型承灾体初步构建了风暴潮灾害脆弱性曲线或曲线族,但由于不同的国家、地区之间灾害影响和承灾体特征及分布存在差异,因此国外的研究成果直接应用于国内具有局限性。应充分发挥遥感解译产品、保险承保历史信息以及灾后现场调查数据的作用,开发中国沿海区域典型承灾体的风暴潮灾害脆弱性曲线,为灾害损失评估、保险费率厘定及理赔、风险定量评估以及风险防控措施制定等提供科学支持。

在全球气候变化的背景下,中国沿海海平面呈上升趋势(国家海洋局, 2015a),可能导致风暴潮自然变异强度加大,极端事件增多,风暴潮灾害面临的巨灾风险依然很大(Hoffman et al, 2010)。面向风暴潮灾害实际防灾减灾需求,风暴潮灾害脆弱性研究应更多关注风暴潮、近岸浪、洪水的多因素对中国沿海地区的影响。为此,一是要建立国家、地区、企业、社区多空间尺度并涵盖经济、政治、社会、环境、文化等多领域综合的风暴潮灾害承灾体社会脆弱性评价体系,为科学防范风暴潮灾害,有效减轻灾害风险提供依据;二是要通过灾害现场调查、物模试验、数值模拟等多种手段,深化对风暴潮灾害动力过程与沿海典型承灾体(海堤、渔船、海水养殖等)相互作用机制的研究,不断修正和完善典型承灾体的脆弱性曲线,为沿海地区针对重点保障目标开展科学风险防控以及灾害应对提供有效支持。

The authors have declared that no competing interests exist.


参考文献

[1] 方佳毅, 陈文方, 孔锋, . 2015.

中国沿海地区社会脆弱性评价

[J]. 北京师范大学学报: 自然科学版, 51(3): 280-286.

https://doi.org/10.16360/j.cnki.jbnuns.2015.03.011      URL      [本文引用: 1]      摘要

将美国社会脆弱性指数(SoⅥ)方法用于中国沿海地区,并基于中 国国情进行改进,以探索中国沿海地区社会脆弱性的空间分布及其社会经济文化驱动因素.基于SoⅥ方法,选取31个指标对我国沿海的300个研究单元进行评 价,采用主成分分析法得到社会脆弱性的6个主要影响因子:城镇化水平,经济条件,年龄与性别,民族与特需人群,居住条件与文盲,医疗水平.对这些因子按照 对社会脆弱性的正向或负向作用进行加和,得到最终的社会脆弱性指数.结果显示,最高的社会脆弱性集中在海南省及北部湾沿岸,江苏北岸和辽宁省北岸社会脆弱 性也较高.

[Fang J Y, Chen W F, Kong F, et al.2015.

Measuring social vulnerability to natural hazards of the coastal areas in China

[J]. Journal of Beijing Normal University: Natural Science, 51(3): 280-286.]

https://doi.org/10.16360/j.cnki.jbnuns.2015.03.011      URL      [本文引用: 1]      摘要

将美国社会脆弱性指数(SoⅥ)方法用于中国沿海地区,并基于中 国国情进行改进,以探索中国沿海地区社会脆弱性的空间分布及其社会经济文化驱动因素.基于SoⅥ方法,选取31个指标对我国沿海的300个研究单元进行评 价,采用主成分分析法得到社会脆弱性的6个主要影响因子:城镇化水平,经济条件,年龄与性别,民族与特需人群,居住条件与文盲,医疗水平.对这些因子按照 对社会脆弱性的正向或负向作用进行加和,得到最终的社会脆弱性指数.结果显示,最高的社会脆弱性集中在海南省及北部湾沿岸,江苏北岸和辽宁省北岸社会脆弱 性也较高.
[2] 方修琦, 殷培红. 2007.

弹性、脆弱性和适应: IHDP三个核心概念综述

[J]. 地理科学进展, 26(5): 11-22.

https://doi.org/10.11820/dlkxjz.2007.05.002      Magsci      [本文引用: 1]      摘要

弹性、脆弱性和适应是全球环境变化人文因素计划( IHDP) 中三个非常重要的核心概念。 由于各自学科研究传统的差异, 不同学科在使用这些概念时其含义有很大差异, 有的甚至是不可 比的。本文主要根据《Global Environmental Change》2006 年第3 期发表的IHDP 学术委员会专题 研讨会成果, 结合UNU 关于脆弱性的研究成果, 重点介绍了这三个核心概念的演变以及相互联 系等方面的最新研究进展。

[Fang X Q, Yin P H.2007.

Review on the three key concepts of resilience, vulnerability and adaptation in the research of global environmental change

[J]. Progress in Geography, 26(5): 11-22.]

https://doi.org/10.11820/dlkxjz.2007.05.002      Magsci      [本文引用: 1]      摘要

弹性、脆弱性和适应是全球环境变化人文因素计划( IHDP) 中三个非常重要的核心概念。 由于各自学科研究传统的差异, 不同学科在使用这些概念时其含义有很大差异, 有的甚至是不可 比的。本文主要根据《Global Environmental Change》2006 年第3 期发表的IHDP 学术委员会专题 研讨会成果, 结合UNU 关于脆弱性的研究成果, 重点介绍了这三个核心概念的演变以及相互联 系等方面的最新研究进展。
[3] 国家海洋局. 2007.

2006年中国海洋灾害公报

[R]. 北京: 国家海洋局.

[本文引用: 1]     

State Oceanic Administration of China. 2007.

2006nian Zhongguo haiyang zaihai gongbao

[R]. Beijing, China: State Oceanic Administration of China.

[本文引用: 1]     

[4] 国家海洋局. 2015a.

2014年中国海平面公报

[R]. 北京: 国家海洋局.

[本文引用: 1]     

State Oceanic Administration of China. 2015a.

2014nian Zhongguo haipingmian gongbao

[R]. Beijing, China: State Oceanic Administration of China.

[本文引用: 1]     

[5] 国家海洋局. 2015b.

2014年中国海洋灾害公报

[R]. 北京: 国家海洋局.

[本文引用: 1]     

State Oceanic Administration of China. 2015b.

2014nian Zhongguo haiyang zaihai gongbao

[R]. Beijing, China: State Oceanic Administration of China.]

[本文引用: 1]     

[6] 国家海洋局. 2015c.

风暴潮风险评估和区划技术导则

[S]. 北京: 国家海洋局.

[本文引用: 1]     

State Oceanic Administration of China. 2015c.

Fengbaochao fengxian pinggu he quhua jishu daoze

[S]. Beijing, China: State Oceanic Administration of China.]

[本文引用: 1]     

[7] 黄滨, 关长涛, 崔勇, . 2011.

台风“米雷”对山东网箱养殖业灾害性影响的调查与技术解析

[J]. 渔业现代化, 38(4): 17-21.

https://doi.org/10.3969/j.issn.1007-9580.2011.04.004      URL      [本文引用: 1]      摘要

为研究台风"米雷"造成近海网 箱设施大面积毁坏的直接和主要原因,在第一时间对山东半岛荣成附近海域网箱养殖业户遭受台风"米雷"袭击进行紧急调查,从网箱设施的材料结构、锚泊系统等 技术层面进行全面的分析。调查结果表明,传统小网箱锚泊系统自身锚缆绳索锚固偏紧,网箱无法随波跳浪而被闷入水中,是导致锚泊系统受力过大而崩溃的最主要 原因。建议加强传统网箱防灾减灾科学问题的研究,努力攻克国产升降式网箱的某些技术瓶颈,来支撑传统网箱的升级换代,提升设施的防灾减灾能力,有效保护渔 民生命财产安全。

[Huang B, Guan C T, Cui Y, et al.2011.

The survey and technology resolving of influence on cage farming in Shan Dong caused by Meari typhoon

[J]. Fishery Modernization, 38(4): 17-21.]

https://doi.org/10.3969/j.issn.1007-9580.2011.04.004      URL      [本文引用: 1]      摘要

为研究台风"米雷"造成近海网 箱设施大面积毁坏的直接和主要原因,在第一时间对山东半岛荣成附近海域网箱养殖业户遭受台风"米雷"袭击进行紧急调查,从网箱设施的材料结构、锚泊系统等 技术层面进行全面的分析。调查结果表明,传统小网箱锚泊系统自身锚缆绳索锚固偏紧,网箱无法随波跳浪而被闷入水中,是导致锚泊系统受力过大而崩溃的最主要 原因。建议加强传统网箱防灾减灾科学问题的研究,努力攻克国产升降式网箱的某些技术瓶颈,来支撑传统网箱的升级换代,提升设施的防灾减灾能力,有效保护渔 民生命财产安全。
[8] 李阔, 李国胜. 2011.

广东沿海地区风暴潮易损性评估

[J]. 热带地理, 31(2): 153-158.

Magsci      [本文引用: 2]      摘要

从系统学角度出发,对广东省沿海地区(阳江-汕尾岸段)风暴潮灾害易损性因子进行综合分析,提出从社会经济、土地利用、生态环境、滨海构造物和承灾能力5个方面对风暴潮承灾体进行易损性评估,建立广东省沿海地区风暴潮易损性评价指标体系.依托国际通用的海岸易损性评估模式并对其进行改进,建立与广东省沿海地区相适应的风暴潮易损性评价模型,运用ArcGIS绘制广东沿海地区(阳江一汕尾岸段)风暴潮易损程度分区图.评估结果表明:珠海市、广州番禺区和台山市风暴潮易损程度最高,中山市、东莞市、惠阳市区和海丰县次之,江门市、汕尾市区、

[Li K, Li G S.2011.

A storm surge vulnerability assessment for coastal Guangdong

[J]. Tropical Geography, 31(2): 153-158.]

Magsci      [本文引用: 2]      摘要

从系统学角度出发,对广东省沿海地区(阳江-汕尾岸段)风暴潮灾害易损性因子进行综合分析,提出从社会经济、土地利用、生态环境、滨海构造物和承灾能力5个方面对风暴潮承灾体进行易损性评估,建立广东省沿海地区风暴潮易损性评价指标体系.依托国际通用的海岸易损性评估模式并对其进行改进,建立与广东省沿海地区相适应的风暴潮易损性评价模型,运用ArcGIS绘制广东沿海地区(阳江一汕尾岸段)风暴潮易损程度分区图.评估结果表明:珠海市、广州番禺区和台山市风暴潮易损程度最高,中山市、东莞市、惠阳市区和海丰县次之,江门市、汕尾市区、
[9] 梁海燕, 邹欣庆. 2005.

海口湾沿岸风暴潮风险评估

[J]. 海洋学报, 27(5): 22-29.

https://doi.org/10.3321/j.issn:0253-4193.2005.05.004      URL      [本文引用: 1]      摘要

参考内陆洪水损失评估的方法, 建立适用于海口湾沿岸风暴潮风险区的损失评估模型,分析了海口湾沿岸风暴潮的风险区域,并根据100 a一遇极值高水位、100 a一遇风暴潮与最高天文潮位的组合水位、可能最大风暴潮与最高天文潮位的组合高水位条件,分析淹没范围;统计100 a一遇极值高水位淹没区内的建筑物,估计可能受灾人口.该文对海口湾沿岸的基本社会经济资料作了一、二级分类,并逐项进行统计,同时还根据需要作了抽样调 查.对分部门的损失率计算方法作了详细介绍,得出个人家庭财产、国家集体财产、农作物和海水养殖等分部门的损失率分别为:30%,4%,70%和 100%;以2001年社会经济资料为基础,100 a一遇极值

[Liang H Y, Zou X Q.2005.

Risk assessment on storm surge in the Haikou Bay

[J]. Acta Oceanologica Sinica, 27(5): 22-29.]

https://doi.org/10.3321/j.issn:0253-4193.2005.05.004      URL      [本文引用: 1]      摘要

参考内陆洪水损失评估的方法, 建立适用于海口湾沿岸风暴潮风险区的损失评估模型,分析了海口湾沿岸风暴潮的风险区域,并根据100 a一遇极值高水位、100 a一遇风暴潮与最高天文潮位的组合水位、可能最大风暴潮与最高天文潮位的组合高水位条件,分析淹没范围;统计100 a一遇极值高水位淹没区内的建筑物,估计可能受灾人口.该文对海口湾沿岸的基本社会经济资料作了一、二级分类,并逐项进行统计,同时还根据需要作了抽样调 查.对分部门的损失率计算方法作了详细介绍,得出个人家庭财产、国家集体财产、农作物和海水养殖等分部门的损失率分别为:30%,4%,70%和 100%;以2001年社会经济资料为基础,100 a一遇极值
[10] 石先武, 方伟华. 2015.

1949-2010年西北太平洋热带气旋时空分布特征分析

[J]. 北京师范大学学报: 自然科学版, 51(3): 287-292.

https://doi.org/10.16360/j.cnki.jbnuns.2015.03.012      URL      [本文引用: 2]      摘要

利用1949—2010西北太平洋热带气旋最佳路径数据集,分析了西北太平洋热带气旋的时空分布特征,结果发现:1)62a来西北太平洋生成的热带气旋和登陆我国的热带气旋年频次呈下降趋势,热带低压下降的趋势尤为明显;2)热带气旋平均生成位置随着月份变化呈现季节移动规律,纬度上有明显北移趋势;3)热带气旋中心气压低值和最大风速高值主要集中在南海盆地和菲律宾海以东洋面区,热带气旋前移速度分布具有显著纬度地带性.

[Shi X W, Fang W H.2015.

Spatiotemporal characteristics of tropical cyclone in NWP basin between 1949 and 2010

[J]. Journal of Beijing Normal University: Natural Science, 51(3): 287-292.]

https://doi.org/10.16360/j.cnki.jbnuns.2015.03.012      URL      [本文引用: 2]      摘要

利用1949—2010西北太平洋热带气旋最佳路径数据集,分析了西北太平洋热带气旋的时空分布特征,结果发现:1)62a来西北太平洋生成的热带气旋和登陆我国的热带气旋年频次呈下降趋势,热带低压下降的趋势尤为明显;2)热带气旋平均生成位置随着月份变化呈现季节移动规律,纬度上有明显北移趋势;3)热带气旋中心气压低值和最大风速高值主要集中在南海盆地和菲律宾海以东洋面区,热带气旋前移速度分布具有显著纬度地带性.
[11] 石先武, 谭骏, 国志兴, . 2013.

风暴潮灾害风险评估研究综述

[J]. 地球科学进展, 28(8): 866-874.

https://doi.org/10.11867/j.issn.1001-8166.2013.08.0866      URL      Magsci      [本文引用: 1]      摘要

我国是受风暴潮影响最严重的少数国家之一,风暴潮灾害致灾机理的研究在过去几十年取得了极大的进展,而风暴潮脆弱性评估和综合风险评估还不能满足风暴潮灾害风险管理的需求。系统总结了风暴潮危险性、脆弱性、综合风险评估及其应用的研究进展,重点分析了典型重现期风暴潮估计、可能最大风暴潮计算、风暴潮物理脆弱性和社会脆弱性评估以及风暴潮风险评估及其应用的研究进展及不足,并对我国风暴潮风险评估急需解决的问题以及未来的研究重点进行了展望,指出了风暴潮灾害风险评估的模型化、系统化、定量化是未来风暴潮风险评估研究的发展趋势,风暴潮灾害的未来风险评估还需考虑全球气候变化以及海平面上升等因素的影响,而风暴潮灾害承灾体脆弱性的定量评价是风暴潮综合风险评估的重点和难点。

[Shi X W, Tan J, Guo Z X, et al.2013.

A review of risk assessment of storm surge disaster

[J]. Advances in Earth Science, 28(8): 866-874.]

https://doi.org/10.11867/j.issn.1001-8166.2013.08.0866      URL      Magsci      [本文引用: 1]      摘要

我国是受风暴潮影响最严重的少数国家之一,风暴潮灾害致灾机理的研究在过去几十年取得了极大的进展,而风暴潮脆弱性评估和综合风险评估还不能满足风暴潮灾害风险管理的需求。系统总结了风暴潮危险性、脆弱性、综合风险评估及其应用的研究进展,重点分析了典型重现期风暴潮估计、可能最大风暴潮计算、风暴潮物理脆弱性和社会脆弱性评估以及风暴潮风险评估及其应用的研究进展及不足,并对我国风暴潮风险评估急需解决的问题以及未来的研究重点进行了展望,指出了风暴潮灾害风险评估的模型化、系统化、定量化是未来风暴潮风险评估研究的发展趋势,风暴潮灾害的未来风险评估还需考虑全球气候变化以及海平面上升等因素的影响,而风暴潮灾害承灾体脆弱性的定量评价是风暴潮综合风险评估的重点和难点。
[12] 石勇, 许世远, 石纯, . 2009.

洪水灾害脆弱性研究进展

[J]. 地理科学进展, 28(1): 41-46.

https://doi.org/10.11820/dlkxjz.2009.01.006      URL      Magsci      [本文引用: 1]      摘要

洪水灾害是当今世界最严重的自然灾害之一,洪灾经济损失及风险评估是防洪减灾领域的一项基础性工 作,而脆弱性的确定是评估模型的关键。文章在对自然灾害脆弱性评估方法总结的基础上,着重对洪水情景模拟中 代表脆弱性的灾损率曲线开展探讨,对灾损曲线的起源、建立方法和综合运用的趋势进行研究。国外保险业与政府 开展此类工作较早,相比于国外已经取得的丰硕研究成果而言,国内灾损率研究远远不能为决策提供有效的指导, 这与我国面临的巨大洪灾风险不相称。政府、保险等部门与科研工作急需结合起来,填补城市洪灾脆弱性研究空 白,多参数综合调研、深入各种承灾体内部系统而细致地开展灾损率调查,对于减少未来洪灾影响,具有非常重要 的实际意义。

[Shi Y, Xu S Y, Shi C, et al.2009.

A review on development of vulnerability assessment of floods

[J]. Progress in Geography, 28(1): 41-46.]

https://doi.org/10.11820/dlkxjz.2009.01.006      URL      Magsci      [本文引用: 1]      摘要

洪水灾害是当今世界最严重的自然灾害之一,洪灾经济损失及风险评估是防洪减灾领域的一项基础性工 作,而脆弱性的确定是评估模型的关键。文章在对自然灾害脆弱性评估方法总结的基础上,着重对洪水情景模拟中 代表脆弱性的灾损率曲线开展探讨,对灾损曲线的起源、建立方法和综合运用的趋势进行研究。国外保险业与政府 开展此类工作较早,相比于国外已经取得的丰硕研究成果而言,国内灾损率研究远远不能为决策提供有效的指导, 这与我国面临的巨大洪灾风险不相称。政府、保险等部门与科研工作急需结合起来,填补城市洪灾脆弱性研究空 白,多参数综合调研、深入各种承灾体内部系统而细致地开展灾损率调查,对于减少未来洪灾影响,具有非常重要 的实际意义。
[13] 石勇, 许世远, 石纯, . 2011.

自然灾害脆弱性研究进展

[J]. 自然灾害学报, 20(2): 131-137.

URL      [本文引用: 1]      摘要

近年来,在国际上日益重视防灾减灾的背景下,脆弱性研究已成为灾害学研究的主题并逐渐融入社会可持续发展策略。在回顾国内外灾害脆弱性研究发展的基础上,阐述了脆弱性的基本内涵,探究了自然灾害脆弱性的基本构成,并对灾害研究领域中容易混淆的危险性、脆弱型、风险、易损性与恢复力等概念进行了辨析。研究归纳总结了开展脆弱性评估的5种经典模式,风险-灾害(RH)模式、压力释放(PAR)模式、政治经济模式、基于区域的综合脆弱性模式和恢复力模式。并且指出,自然灾害研究领域的脆弱性评估应主要基于历史数据、指标体系和实际调查的灾损率曲线。从发展趋势来看,脆弱性研究正日益着重多领域合作、多对象细化和除指标体系外多种方法的综合应用,旨在从人类社会本身找出灾难根源,为灾害保险和政府决策提供有效指导。

[Shi Y, Xu S Y, Shi C, et al.2011.

Progress in research on vulnerability of natural disasters

[J]. Journal of Natural Disasters, 20(2): 131-137.]

URL      [本文引用: 1]      摘要

近年来,在国际上日益重视防灾减灾的背景下,脆弱性研究已成为灾害学研究的主题并逐渐融入社会可持续发展策略。在回顾国内外灾害脆弱性研究发展的基础上,阐述了脆弱性的基本内涵,探究了自然灾害脆弱性的基本构成,并对灾害研究领域中容易混淆的危险性、脆弱型、风险、易损性与恢复力等概念进行了辨析。研究归纳总结了开展脆弱性评估的5种经典模式,风险-灾害(RH)模式、压力释放(PAR)模式、政治经济模式、基于区域的综合脆弱性模式和恢复力模式。并且指出,自然灾害研究领域的脆弱性评估应主要基于历史数据、指标体系和实际调查的灾损率曲线。从发展趋势来看,脆弱性研究正日益着重多领域合作、多对象细化和除指标体系外多种方法的综合应用,旨在从人类社会本身找出灾难根源,为灾害保险和政府决策提供有效指导。
[14] 宋城城, 李梦雅, 王军, . 2014.

基于复合情景的上海台风风暴潮灾害危险性模拟及其空间应对

[J]. 地理科学进展, 33(12): 1692-1703.

https://doi.org/10.11820/dlkxjz.2014.12.013      Magsci      [本文引用: 1]      摘要

综合考虑海平面上升、陆域和海域地形变化、海塘沉降等因素,本文以上海历史上引发强风暴潮的热带气旋TC5612、TC8114 和TC0012 为基础,构建了12 种复合灾害情景,利用MIKE21 FM模型模拟分析了不同情景下台风风暴潮对上海造成的漫滩淹没影响。结果表明:以2010 年为模拟基准年份,由于上海地区有高标准的海塘防护,发生风暴潮漫堤淹没的概率极低;但随着时间情景的改变,各情景要素强度加大,漫滩淹没危险性逐渐增大;在2040 年的复合灾害情景中,以正面登陆类热带气旋造成的影响为最大,局部区域淹没深度可达3.0 m以上,全市25.23%的海塘和防汛墙存在漫堤危险,漫堤淹没危险区的面积可达到909.53 km2。在此基础上开展了应急避难模拟及避难场所优化研究,进而针对性地提出了保护城市水源涵养区、开挖城市蓄水空间、提高部分海塘设防水平、加强城市排涝系统建设和优化城市应急避难场所布局等空间应对方案。研究成果给上海新一轮“城市安全与综合防灾规划”提供了科学依据。

[Song C C, Li M Y, Wang J, et al.2014.

Simulation of typhoon storm surge impacts in Shanghai based on storm surge scenarios and disaster prevention measures

[J]. Progress in Geography, 33(12): 1692-1703.]

https://doi.org/10.11820/dlkxjz.2014.12.013      Magsci      [本文引用: 1]      摘要

综合考虑海平面上升、陆域和海域地形变化、海塘沉降等因素,本文以上海历史上引发强风暴潮的热带气旋TC5612、TC8114 和TC0012 为基础,构建了12 种复合灾害情景,利用MIKE21 FM模型模拟分析了不同情景下台风风暴潮对上海造成的漫滩淹没影响。结果表明:以2010 年为模拟基准年份,由于上海地区有高标准的海塘防护,发生风暴潮漫堤淹没的概率极低;但随着时间情景的改变,各情景要素强度加大,漫滩淹没危险性逐渐增大;在2040 年的复合灾害情景中,以正面登陆类热带气旋造成的影响为最大,局部区域淹没深度可达3.0 m以上,全市25.23%的海塘和防汛墙存在漫堤危险,漫堤淹没危险区的面积可达到909.53 km2。在此基础上开展了应急避难模拟及避难场所优化研究,进而针对性地提出了保护城市水源涵养区、开挖城市蓄水空间、提高部分海塘设防水平、加强城市排涝系统建设和优化城市应急避难场所布局等空间应对方案。研究成果给上海新一轮“城市安全与综合防灾规划”提供了科学依据。
[15] 宋学家, 刘钦政, 王彰贵, . 2005.

海洋环境预测中的关键科学问题

[J]. 海洋预报, 22(S1): 7-16.

https://doi.org/10.3969/j.issn.1003-0239.2005.z1.002      URL      [本文引用: 1]      摘要

国家海洋环境预报中心经过40年的发展,海洋环境预报事业初具规模.本文主要分别从海洋环境预报多个预报要素出发,结合当前的国内外发展趋势,介绍各种海洋环境预报所面临的关键科学技术问题和挑战.

[Song X J, Liu Q Z, Wang Z G, et al.2005.

Key scientific problems in the prediction of the marine environment

[J]. Marine Forecasts, 22(S1): 7-16.]

https://doi.org/10.3969/j.issn.1003-0239.2005.z1.002      URL      [本文引用: 1]      摘要

国家海洋环境预报中心经过40年的发展,海洋环境预报事业初具规模.本文主要分别从海洋环境预报多个预报要素出发,结合当前的国内外发展趋势,介绍各种海洋环境预报所面临的关键科学技术问题和挑战.
[16] 殷克东, 王冰, 刘士彬. 2010.

中国沿海风暴潮灾害易损性风险区划研究

[J]. 统计与决策, (17): 48-50.

URL      Magsci      [本文引用: 1]      摘要

文章在界定风暴潮灾害风险的基础上,按照风暴潮灾害风险区划原则,选取风暴潮灾害易损性风险评价指标,采用层次聚类分析、熵值法及灰色关联分析方法,构建了我国沿海风暴潮灾害易损性风险区划,将我国沿海11省市划分为5个区,揭示了我国沿海承担风暴潮灾害易损性风险的地域差异性,为因地制宜地制定防灾减灾措施与规划提供了科学依据.

[Yin K D, Wang B, Liu S B.2010.

Vunerability zonation of storm surge disaster in the coastal areas of China

[J]. Statistics & Decision, (17): 48-50.]

URL      Magsci      [本文引用: 1]      摘要

文章在界定风暴潮灾害风险的基础上,按照风暴潮灾害风险区划原则,选取风暴潮灾害易损性风险评价指标,采用层次聚类分析、熵值法及灰色关联分析方法,构建了我国沿海风暴潮灾害易损性风险区划,将我国沿海11省市划分为5个区,揭示了我国沿海承担风暴潮灾害易损性风险的地域差异性,为因地制宜地制定防灾减灾措施与规划提供了科学依据.
[17] 张杰. 2011.

浙江温州地区海水养殖业风险状况及对策研究

[J]. 现代渔业信息, 26(11): 3-5.

https://doi.org/10.3969/j.issn.1004-8340.2011.11.001      URL      [本文引用: 1]      摘要

水产养殖业是一个高投入、高产出、高风险的产业,养殖过程中面临 的各种自然、市场和技术风险都会给渔业生产造成不可估量的损失。温州地处亚热带海洋性季风气候区,海水养殖业在当地农村经济建设中发挥了重要作用,全面评 估当地海水养殖业中存在的各种风险因素和风险程度,积极探索和研究行之有效的应对机制,对于促进当地海水养殖业持续、健康、快速发展以及渔区的和谐与稳定 具有重要的现实意义。

[Zhang J.2011.

Risk status of marine aquaculture in Wenzhou area in Zhejiang Province and study to countermeasure

[J]. Modern Fisheries Information, 26(11): 3-5.]

https://doi.org/10.3969/j.issn.1004-8340.2011.11.001      URL      [本文引用: 1]      摘要

水产养殖业是一个高投入、高产出、高风险的产业,养殖过程中面临 的各种自然、市场和技术风险都会给渔业生产造成不可估量的损失。温州地处亚热带海洋性季风气候区,海水养殖业在当地农村经济建设中发挥了重要作用,全面评 估当地海水养殖业中存在的各种风险因素和风险程度,积极探索和研究行之有效的应对机制,对于促进当地海水养殖业持续、健康、快速发展以及渔区的和谐与稳定 具有重要的现实意义。
[18] 浙江省水利河口研究院. 2007.

浙江省水利工程防洪减灾能力评估[R]

. 杭州: 浙江省水利河口研究院.

[本文引用: 1]     

Zhejiang Institute of Hydrulics & Estuary. 2007.

Zhejiangsheng shuili gongcheng fanghong jianzai nengli pinggu

[R]. Hangzhou, China: Zhejiang Institute of Hydraulics & Estuary.]

[本文引用: 1]     

[19] 郑君. 2011.

风暴潮灾害风险评估方法及应用研究[D]

. 杭州: 浙江大学.

[本文引用: 2]     

Zheng J. 2011.

Risk assessment of storm surge and its application

[D]. Hangzhou, China: Zhejiang University.

[本文引用: 2]     

[20] 周瑶, 王静爱. 2012.

自然灾害脆弱性曲线研究进展

[J]. 地球科学进展, 27(4): 435-442.

Magsci      [本文引用: 1]      摘要

在全球变化与全球化背景下自然灾害风险逐年增大,灾害评估就成为风险防范的重要基础。灾害评估包括灾情估算与风险评估2个方面, 而脆弱性分析是把灾害与风险研究紧密联系起来的重要桥梁。脆弱性曲线作为定量精确评估承灾体脆弱性的方法,近年来在多领域被广泛运用,成为灾情估算、风险定量分析以及风险地图编制的关键环节。从致灾因子角度综述脆弱性曲线的研究进展,重点阐述基于灾情数据、已有曲线、调查和模型的脆弱性曲线构建。研究表明脆弱性曲线构建由单曲线向多曲线库、单一参数向综合参数、单一方法向多领域综合应用发展,具有综合化和精细化的趋势。进一步开展多领域、多方法综合脆弱性曲线研究,对灾损快速评估及风险评价,防灾减灾具有重要意义。

[Zhou Y, Wang J A.2012.

A review on development of vulnerability curve of natural disaster

[J]. Advances in Earth Science, 27(4): 435-442.]

Magsci      [本文引用: 1]      摘要

在全球变化与全球化背景下自然灾害风险逐年增大,灾害评估就成为风险防范的重要基础。灾害评估包括灾情估算与风险评估2个方面, 而脆弱性分析是把灾害与风险研究紧密联系起来的重要桥梁。脆弱性曲线作为定量精确评估承灾体脆弱性的方法,近年来在多领域被广泛运用,成为灾情估算、风险定量分析以及风险地图编制的关键环节。从致灾因子角度综述脆弱性曲线的研究进展,重点阐述基于灾情数据、已有曲线、调查和模型的脆弱性曲线构建。研究表明脆弱性曲线构建由单曲线向多曲线库、单一参数向综合参数、单一方法向多领域综合应用发展,具有综合化和精细化的趋势。进一步开展多领域、多方法综合脆弱性曲线研究,对灾损快速评估及风险评价,防灾减灾具有重要意义。
[21] Adger W N.2006.

Vulnerability

[J]. Global Environmental Change, 16(3): 268-281.

https://doi.org/10.1016/j.gloenvcha.2006.02.006      URL      摘要

This paper reviews research traditions of vulnerability to environmental change and the challenges for present vulnerability research in integrating with the domains of resilience and adaptation. Vulnerability is the state of susceptibility to harm from exposure to stresses associated with environmental and social change and from the absence of capacity to adapt. Antecedent traditions include theories of vulnerability as entitlement failure and theories of hazard. Each of these areas has contributed to present formulations of vulnerability to environmental change as a characteristic of social-ecological systems linked to resilience. Research on vulnerability to the impacts of climate change spans all the antecedent and successor traditions. The challenges for vulnerability research are to develop robust and credible measures, to incorporate diverse methods that include perceptions of risk and vulnerability, and to incorporate governance research on the mechanisms that mediate vulnerability and promote adaptive action and resilience. These challenges are common to the domains of vulnerability, adaptation and resilience and form common ground for consilience and integration.
[22] Basco D R, Pope J.2004.

Groin functional design guidance from the coastal engineering manual

[J]. Journal of Coastal Research, 33(S1): 121-130.

URL      [本文引用: 1]      摘要

Groins are constructed to retain sand on the subaerial beach. Modern coastal engineering practice combines beach nourishment with a groin design suitable to permit sand bypassing of the groin field without loss to the system. This paper summarizes elements in the functional design of groins as presented in the new Coastal Engineering Manual (CEM) of the US Army Corps of Engineers. The CEM replaces the Shore Protection Manual. The most significant change is the explicit acknowledgement of a minimum, dry beach width as a central empirical design criterion for the use of groins in coastal storm protection. Modern numerical models are helpful to study coastal processes both alongshore and on-offshore for the project location and in conducting an analysis of design elements. Field monitoring and the development of performance criteria are also recommended to determine the level of performance success, to establish triggers prompting the need for project maintenance, and to identify adverse impacts to adjacent beaches. Such practices and safeguards will help to overcome the negative perceptions of groins and groin fields as a viable technology for coastal erosion mitigation.
[23] Berkes F.2007.

Understanding uncertainty and reducing vulnerability: Lessons from resilience thinking

[J]. Natural Hazards, 41(2): 283-295.

https://doi.org/10.1007/s11069-006-9036-7      Magsci      [本文引用: 1]      摘要

[24] Boyd E.2005.

Toward an empirical measure of disaster vulnerability: Storm surges, New Orleans, and Hurricane Betsy

[C]//Proceedings of the 4th UCLA conference on public health and disasters. Los Angeles, CA: UCLA.

[25] Cutter S L.1996.

Vulnerability to environmental hazards

[J]. Progress in Human Geography, 20(4): 529-539.

[26] Chen W F, Cutter S L, Emrich C T, et al.2013.

Measuring social vulnerability to natural hazards in the Yangtze River Delta region, China

[J]. International Journal of Disaster Risk Science, 4(4): 169-181.

https://doi.org/10.1007/s13753-013-0018-6      URL      [本文引用: 1]      摘要

Social vulnerability emphasizes the different burdens of disaster losses within and between places. Although China continuously experiences devastating natural disasters, there is a paucity of research specifically addressing the multidimensional nature of social vulnerability. This article presents an initial study on the social vulnerability of the Yangtze River Delta region in China. The goal is to replicate and test the applicability of the place-based Social Vulnerability Index (SoVI03) developed for the United States in a Chinese cultural context. Twenty-nine variables adapted from SoVI03 were collected for each of the 134 analysis units in the study area. Using principal components analysis, six factors were identified from the variable set: employment and poverty, education, poor housing quality, minorities, family size, and housing size—factors similar to those identified for the United States. Factor scores were summed to get the final SoVI03 scores and the most and least vulnerable study units were identified and mapped. The highest social vulnerability is concentrated in the southern portions of the study area—Jingning, Suichang, Yunhe, Lanxi, Pan’an, and Shengsi. The least socially vulnerable areas are concentrated southwest, west, and northwest of Shanghai. Limitations of replication are discussed along with policy-relevant suggestions for vulnerability reduction and risk mitigation in China.
[27] Federal Emergency Management Agency.2010.

Multi-hazard loss estimation methodology earthquake model HAZUS®-MH MR5 technical manual[R]. Washington DC:

Federal Emergency Management Agency.

[本文引用: 1]     

[28] Franco L, de Gerloni M, van der Meer J W.1995.

Wave overtopping on vertical and composite breakwaters

[J]. Coastal Engineering, 1030-1045.

URL      [本文引用: 1]      摘要

After an extensive series of 2-D model tests on the overtopping response of various caisson breakwaters, general conceptual design formulae and graphs have been derived which relate the mean discharge with the relative freeboard. The influence of geometrical changes is described by reduction factors with reference to the pure vertical structure. A simple correlation has been made with the overtopping performance of sloping structures. Overtopping volumes per wave were also measured and fitted with a universal probability function; their effects on model persons and cars behind the crownwall were statistically evaluated, thus allowing an upgrading of the existing criteria for the admissible overtopping on breakwaters.
[29] Füssel H M.2007.

Vulnerability: A generally applicable conceptual framework for climate change research

[J]. Global Environmental Change, 17(2): 155-167.

https://doi.org/10.1016/j.gloenvcha.2006.05.002      URL      [本文引用: 1]      摘要

The term 'ulnerability' is used in many different ways by various scholarly communities. The resulting disagreement about the appropriate definition of vulnerability is a frequent cause for misunderstanding in interdisciplinary research on climate change and a challenge for attempts to develop formal models of vulnerability. Earlier attempts at reconciling the various conceptualizations of vulnerability were, at best, partly successful. This paper presents a generally applicable conceptual framework of vulnerability that combines a nomenclature of vulnerable situations and a terminology of vulnerability concepts based on the distinction of four fundamental groups of vulnerability factors. This conceptual framework is applied to characterize the vulnerability concepts employed by the main schools of vulnerability research and to review earlier attempts at classifying vulnerability concepts. None of these one-dimensional classification schemes reflects the diversity of vulnerability concepts identified in this review. The wide range of policy responses available to address the risks from global climate change suggests that climate impact, vulnerability, and adaptation assessments will continue to apply a variety of vulnerability concepts. The framework presented here provides the much-needed conceptual clarity and facilitates bridging the various approaches to researching vulnerability to climate change.
[30] Goda Y.2009.

Derivation of unified wave overtopping formulas for seawalls with smooth, impermeable surfaces based on selected CLASH datasets

[J]. Coastal Engineering, 56(4): 385-399.

https://doi.org/10.1016/j.coastaleng.2008.09.007      URL      [本文引用: 1]      摘要

A set of unified formulas for prediction of the mean rate of wave overtopping at coastal structures with smooth, impermeable surfaces have been derived through the analysis of the selected CLASH datasets. The mean wave overtopping rate is expressed as the function of the significant wave height at the structural toe and the relative freeboard. The formulas are applicable for both vertical walls and inclined seawalls with smooth transition between them. The formulas are simple but cover the full range of water depth from the shoreline to deep water. The effects of the toe depth and the seabed slope on wave overtopping rate are duly incorporated in the formulas. Prediction performance of the new formulas is better than the EurOtop formulas for both vertical walls and inclined seawalls.
[31] Granger K.2003.

Quantifying storm tide risk in cairns

[J]. Natural Hazards, 30(2): 165-185.

https://doi.org/10.1023/A:1026166300914      Magsci      摘要

[32] Grossi P, Kunreuther H.2005.

Catastrophe modeling: A new approach to managing risk

[M]. New York: Springer.

[本文引用: 1]     

[33] Hieu P D, Vinh P N, van Toan D, et al.2014.

Study of wave-wind interaction at a seawall using a numerical wave channel

[J]. Applied Mathematical Modelling, 38(21-22): 5149-5159.

https://doi.org/10.1016/j.apm.2014.04.038      URL      [本文引用: 1]      摘要

ABSTRACT This paper presents the study on wind and waves interactions at a seawall using a numerical wave channel. The numerical experiments were conducted for wave overtopping of a ¼ sloping seawall using several conditions of incident waves and wind speeds. The numerical results were verified against laboratory data in a case for wave overtopping without wind effects. The interaction of waves and wind was analyzed in term of mean wave quantities, overtopping rate and variation of wind velocity at some selected locations. The results showed that the overtopping rate was strongly affected by wind and the wind field was also significantly modified by waves. There exists an effective range of wind speed in comparison with the local shallow wave speed at the breaking location, which gives significant effects to the wave overtopping rates. The maximum of wind adjustment coefficient fw for wave overtopping rate was strongly related to the mean overtopping rate in the case for no wind. This study also showed that when the mean overtopping rate was greater than 5 × 10-4m3/s/m, the maximum of wind adjustment coefficient fw approached to a specific value of about 1.25.
[34] Hoffman R N, Dailey P, Hopsch S, et al.2010.

An estimate of increases in storm surge risk to property from sea level rise in the first half of the twenty-first century

[J]. Weather, Climate, and Society, 2(4): 271-293.

[本文引用: 1]     

[35] Hossain M N.2015.

Analysis of Human vulnerability to cyclones and storm surges based on influencing physical and socioeconomic factors: Evidences from coastal Bangladesh

[J]. International Journal of Disaster Risk Reduction, 13: 66-75.

[36] Jonkman S N.2007.

Loss of life estimation in flood risk assessment; theory and applications[D]. Delft, Netherlands: Delft University of

Technology.

[本文引用: 1]     

[37] Jonkman S N, Maaskant B, Boyd E, et al.2009.

Loss of life caused by the flooding of New Orleans after Hurricane Katrina: Analysis of the relationship between flood characteristics and mortality

[J]. Risk Analysis: An Official Publication of the Society for Risk Analysis, 29(5): 676-698.

[本文引用: 1]     

[38] Jonkman S N, van Gelder P H A J M, Vrijling J K.2003.

An overview of quantitative risk measures for loss of life and economic damage

[J]. Journal of Hazardous Materials, 99(1): 1-30.

https://doi.org/10.1016/S0304-3894(03)00034-7      Magsci      [本文引用: 1]      摘要

Abstract

Male Sprague Dawley® rats were administered a vitrified material obtained from the former Charleston Naval Shipyard (Charleston, SC, USA) by gavage once daily for 32 days. Group mean body weight of treated animals was within ±5.4% of controls. No gross or histopathological changes were observed when animals were treated with 67, 174, or 370\mg/kg per day. Analysis of heavy metals revealed a statistically significant increase only in the concentration of arsenic in the livers of animals treated with 174 or 370\mg/kg per day versus controls. Although there was a statistically significant increase in liver arsenic levels, the concentrations were far below mean soil concentrations for western and eastern United States. If the standard assumption of 100% absorption is used, the concentrations observed in the present study are about 20 times less than the average background soil levels in these regions. Based on this, it is concluded that the vitrified material would not pose a public health risk for its intended use as an additive for asphalt and glass beams.

[39] Jonkman S N, Vrijling J K.2008.

Loss of life due to floods

[J]. Journal of Flood Risk Management, 1(1): 43-56.

https://doi.org/10.1111/j.1753-318X.2008.00006.x      URL      [本文引用: 1]      摘要

This article gives an overview of the research on loss of life due to floods. The limited information regarding this topic is presented and evaluated. Analysis of global data for different flood types shows that the magnitude of mortality is related to the severity of the flood effects and the possibilities for warning and evacuation. Information from historical flood events gives a more detailed insight into the factors that determine mortality for an event, such as flood characteristics and the effectiveness of warning and evacuation. At the individual level, the occurrence of fatalities will be influenced by behaviour and individual vulnerability factors. Existing methods for the estimation of loss of life that have been developed for different types of floods in different regions are briefly discussed. A new method is presented for the estimation of loss of life due to floods of low-lying areas protected by flood defences. It can be used to analyse the consequences and risks of flooding and thereby provide a basis for risk evaluation and decision-making. The results of this research can contribute to the development of strategies to prevent and mitigate the loss of life due to floods.
[40] Kato F, Torii K I.2002.

Damages to general properties due to a storm surge in Japan

[C]//Ewing L, Wallendorf L. Solutions to coastal disasters’02. New York: American Society of Civil Engineers: 159-171.

[41] Kelman I.2002.

Physical flood vulnerability of residential properties in coastal, eastern England[D]. Cambridge, UK: University of

Cambridge.

[42] Kircher C A, Whitman R V, Holmes W T.2006.

HAZUS earthquake loss estimation methods

[J]. Natural Hazards Review, 7(2): 45-59.

URL      [本文引用: 1]     

[43] Kleinosky L R, Yarnal B, Fisher A.2007.

Vulnerability of hampton roads, virginia to storm-surge flooding and sea-level rise

[J]. Natural Hazards, 40(1): 43-70.

https://doi.org/10.1007/s11069-006-0004-z      Magsci      摘要

[44] Larese A, Rossi R, Oñate E, et al.2014.

Numerical and experimental study of overtopping and failure of rockfill dams

[J]. International Journal of Geomechanics, 15(4): doi:10.1061/(ASCE)GM.1943-5622.0000345.

URL      [本文引用: 1]      摘要

This paper aims to present and validate a numerical technique for the simulation of the overtopping and onset of failure in rockfill dams caused by mass sliding. This goal is achieved by coupling a fluid dynamic model for the simulation of the free surface and through-flow problems together with a numerical technique for the calculation of the rockfill response and deformation. Both the flow within the dam body and in its surroundings are taken into account. An extensive validation of the resulting computational method is performed by solving several failure problems on physical models of rockfill dams for which experimental results have been obtained by the authors.
[45] Li K, Li G S.2011.

Vulnerability assessment of storm surges in the coastal area of Guangdong Province

[J]. Natural Hazards and Earth System Sciences, 11(7): 2003-2010.

https://doi.org/10.5194/nhess-11-2003-2011      URL      摘要

Being bordered by the South China Sea and with long coastline, the coastal zone of Guangdong Province is often under severe risk of storm surges, as one of a few regions in China which is seriously threatened by storm surges. This article systematically analyzes the vulnerability factors of storm surges in the coastal area of Guangdong (from Yangjing to Shanwei). Five vulnerability assessment indicators of hazard-bearing bodies are proposed, which are social economic index, land use index, eco-environmental index, coastal construction index, and disaster-bearing capability index. Then storm surge vulnerability assessment index system in the coastal area of Guangdong is established. Additionally, the international general mode about coastal vulnerability assessment is improved, and the vulnerability evolution model of storm surges in the coastal area of Guangdong is constructed. Using ArcGIS, the vulnerability zoning map of storm surges in the study region is drawn. Results show that there is the highest degree of storm surge vulnerability in Zhuhai, Panyu, and Taishan; second in Zhongshan, Dongguan, Huiyang, and Haifeng; third in Jiangmen, Shanwei, Yangjiang, and Yangdong; fourth in Baoan, Kaiping, and Enping; and lowest in Guangzhou, Shunde, Shenzhen, and Longgang. This study on the risk of storm surges in these coastal cities can guide the land use of coastal cities in the future, and provide scientific advice for the government to prevent and mitigate the storm surge disasters. It has important theoretical and practical significance.
[46] Ming X D, Xu W, Li Y, et al.2015.

Quantitative multi-hazard risk assessment with vulnerability surface and hazard joint return period

[J]. Stochastic Environmental Research and Risk Assessment, 29(1): 35-44.

https://doi.org/10.1007/s00477-014-0935-y      URL      [本文引用: 1]      摘要

Risk assessment plays an important role in disaster risk management. Existing multi-hazard risk assessment models are often qualitative or semi-quantitative in nature and used for comparative study of regional risk levels. They cannot estimate directly probability of disaster losses from the joint impact of several hazards. In this paper, a quantitative approach of multi-hazard risk assessment based on vulnerability surface and joint return period of hazards is put forward to assess the risk of crop losses in the Yangtze River Delta region of China. The impact of strong wind and flood, the two most prominent agricultural hazards in the area, is analyzed. The multi-hazard risk assessment process consists of three steps. First, a vulnerability surface, which denotes the functional relationship between the intensity of the hazards and disaster losses, was built using the crop losses data for losses caused by strong wind and flood in the recent 30 years. Second, the joint probability distribution of strong wind and flood was established using the copula functions. Finally, risk curves that show the probability of crop losses in this multi-hazard context at four case study sites were calculated according to the joint return period of hazards and the vulnerability surface. The risk assessment result of crop losses provides a useful reference for governments and insurance companies to formulate agricultural development plans and analyze the market of agricultural insurance. The multi-hazard risk assessment method developed in this paper can also be used to quantitatively assess multi-hazard risk in other regions.
[47] Pendleton E A, Thieler E R, Williams S J.2004.

Coastal vulnerability assessment of cape hatteras national seashore (CAHA) to sea level rise[R]. Reston, VA:

United States Geological Survey.

[本文引用: 1]     

[48] Pistrika A K, Jonkman S N.2010.

Damage to residential buildings due to flooding of New Orleans after hurricane Katrina

[J]. Natural Hazards, 54(2): 413-434.

https://doi.org/10.1007/s11069-009-9476-y      Magsci      摘要

This article analyzes the direct damage to residential buildings caused by the flooding of New Orleans after hurricane Katrina in the year 2005. A public dataset has been analyzed that contains information on the economic damage levels for approximately 95,000 residential buildings in the flooded area. The relationship between the flood characteristics and economic damage to residential buildings has been investigated. Results of hydrodynamic flood simulations have been used that give insight in water depths and flow velocities in the study area. In general, differences between the three polders in the observed distributions of damage estimates are related to differences in flood conditions. The highest damage percentages and structural damage mainly occurred in areas where higher flow velocities occurred, especially near the breaches in the Lower 9th Ward neighborhood. Further statistical analysis indicated that there is not any strong one-to-one relationship between the damage percentage and the water depth or the depth-velocity product. This suggests that there is considerable uncertainty associated with stage-damage functions, especially when they are applied to individual structures or smaller clusters of buildings. Based on the data, a more general approach has been proposed that could be used to distinguish different damage zones based on water depth and flow velocity for an area that is affected by flooding due to breaching of flood defenses. Further validation of existing damage models with the dataset and further inclusion of information on building type in the analysis of damage levels is recommended.
[49] Pullen T, Allsop N W H, Bruce T, et al.2007.

Wave overtopping of sea defences and related structures: Assessment manual[R]. Luxembourg City, Luxembourg:

Envrionment Agency Enw Kfki.

[本文引用: 1]     

[50] Rao A D, Chittibabu P, Murty T S, et al.2007.

Vulnerability from storm surges and cyclone wind fields on the coast of Andhra Pradesh, India

[J]. Natural Hazards, 41(3): 515-529.

https://doi.org/10.1007/s11069-006-9047-4      Magsci      摘要

[51] Shi X W, Liu S, Yang S N, et al.2015.

Spatial-temporal distribution of storm surge damage in the coastal areas of China

[J]. Natural Hazards, 79(1): 237-247.

https://doi.org/10.1007/s11069-015-1838-z      URL      摘要

Storm surges account for increasing economic losses and casualties (including death and missing) because of sea-level rise and growing population in coastal areas. China is one of the several countries severely affected by storm surge disasters. In this study, the annual variation and geographical distribution of direct economic losses and casualties caused by storm surge in coastal areas of China were analyzed based on the losses database. The results show that: (1) the frequency of the tropical storm surges over the past 65 years has risen remarkably with a significant trend, while the frequency of extra-tropical storm surges does not display this trend; (2) the annual casualties caused by storm surge have decreased, with Zhejiang, Fujian, and Guangdong provinces suffering the highest casualties from storm surge; and (3) the annual direct economic losses present no obvious trend, with Guangdong, Zhejiang, and Fujian experiencing the highest direct economic losses from storm surge. Taking GDP and the gross ocean production into consideration, their loss rates show an obvious decreasing trend over the past 25 years. Although population and exposed value have increased rapidly in coastal areas, the casualties and economic loss rate show a decreasing trend, suggesting that disaster reduction measures by the Chinese government have had a significant effect in storm surge disaster prevention. Copyright Springer Science+Business Media Dordrecht 2015
[52] Stocker T F, Qin D H, Plattner G K, et al.2013. Climate change 2013: The physical science basis, Working Group Ⅰ Contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press.

[本文引用: 1]     

[53] Thomas D S K, Phillips B D, Lovecamp W E, et al. 2013. Social vulnerability to disasters[M]. 2nd ed. Boca Raton, FL: CRC Press.

[本文引用: 1]     

[54] United Nations International Strategy for Disaster Reduction.2009.

UNISDR terminology on disaster risk reduction[R]. Geneva, Switzerland: United Nations International Strategy for

Disaster Reduction.

[本文引用: 1]     

[55] US Army Corps of Engineers.1993.

Flood proofing: How to evaluate your options: Decision tree[R]. Vicksburg, MS: US Army Corps of

Engineers.

[56] Wisner B, Blaikie P, Cannon T, et al.2003.

At risk: Natural hazards, people’s vulnerability and disasters

[M]. 2nd ed. London, UK: Routledge.

[本文引用: 1]     

[57] Woo G.2002.

Natural catastrophe probable maximum loss

[J]. British Actuarial Journal, 8(5): 943-959.

https://doi.org/10.1017/S1357321700004037      URL      [本文引用: 1]      摘要

The procedure for estimating probable maximum loss (PML) for natural catastrophes has evolved over the past few decades from a rather simplistic deterministic basis to a more sophisticated methodology based on loss exceedance probability curves, generated using catastrophe modelling software. This development process is reviewed, with an emphasis on the earthquake peril, which, because of its widespread threat to critical industrial installations, has been at the forefront of most PML advances. The coherent risk definition of PML is advocated as an improvement over standard quantile methods, which can give rise to anomalous aggregation results failing to satisfy the fundamental axiom of subadditivity, and so discouraging the pooling of risks.
[58] Wood R M, Drayton M, Berger A, et al.2005.

Catastrophe loss modelling of storm-surge flood risk in eastern England

[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical & Engineering Sciences, 363: 1407-1422.

https://doi.org/10.1098/rsta.2005.1575      URL      PMID: 16191657      [本文引用: 1]      摘要

Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of 'tide with surge' are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include 'loss exceedence probabilities' as well as 'average annualized losses', which can be employed for calculating coastal flood risk premiums in each postcode.
[59] Yin J, Yin Z N, Wang J, et al.2012.

National assessment of coastal vulnerability to sea-level rise for the Chinese coast

[J]. Journal of Coastal Conservation, 16(1): 123-133.

https://doi.org/10.1007/s11852-012-0180-9      Magsci      [本文引用: 1]      摘要

Abstract
Sea-level rise as a result of climate change increases inundation and erosion, which are affected by a complex interplay of physical environmental parameters at the coast. China’s coast is vulnerable to accelerated sea-level rise and associated coastal flooding because of physical and socio-economical factors such as its low topography, highly developed economy, and highly dense population. To identify vulnerable sections of the coast, this paper presents a national assessment of the vulnerability of the Chinese coast using 8 physical variables: sea-level rise, coastal geomorphology, elevation, slope, shoreline erosion, land use, mean tide range, and mean wave height. A coastal vulnerability index was calculated by integrating the differentially weighted rank values of the 8 variables, based on which the coastline is segmented into 4 classes. The results show that 3% of the 18,000-km-long Chinese coast is very highly vulnerable, 29% is highly vulnerable, 58% is moderately vulnerable, and 10% is in the low-vulnerable class. Findings further reveal that large amounts of land and population will be vulnerable to inundation by coastal flooding from sea level rise and storm surge. Finally, some suggestions are presented for decision makers and other concerned stakeholders to develop appropriate coastal zone management and mitigation measures.
[60] Yuan S Y, Li L, Amini F, et al.2014.

Turbulence measurement of combined wave and surge overtopping of a full-scale HPTRM-Strengthened levee

[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(4): 86-95.

https://doi.org/10.1061/(ASCE)WW.1943-5460.0000230      URL      [本文引用: 1]      摘要

A combination of storm surge and extreme waves may cause overtopping of coastal protection structures such as levees, dikes, and seawalls, resulting in structural damage and flooding behind these structures. High turbulence of the overtopping flow is an important or even critical factor in soil erosion, and may be responsible for the destruction of levees during combined overtopping. The goal of this study was to observe and measure the turbulence on the crest and landside of levees strengthened by high performance turf reinforcement mats (HPTRMs). A full-scale laboratory study of the combined wave and surge overtopping of a levee strengthened with HPTRMs was conducted in a two-dimensional (2D) laboratory wave/flow flume. During a total of 11 trials, the authors recorded and processed three-dimensional (3D) velocity and water depth. They developed a new formula to estimate the average overtopping discharge. This paper presents turbulent fluctuations of the three components of flow velocity on the crest and landside slope, and develops formulas to estimate the turbulent intensity. The study used five methods—the log profile method, three turbulent methods (Reynolds stress; turbulent kinetic energy, \ik; and turbulent kinetic energy, \iw′), and the Nadal and Hughes method—for the turbulent shear stress predictions on the levee crest and landside slopes. The new formulas developed show that turbulent shear stresses at the middle of the crest, the end of the crest, and the landside slope are functions of the relative freeboard.
[61] 津波·高潮ハザードマップ研究会事務局. 2003.

津波·高潮ハザードマップマニュアル

[R]. 東京: 内閣府.

Tsunami·Storm Surge Research Association. 2003.

Tsunami·storm surge manual[

R]. Tokyo, Japan: The Cabinet Office.]

/