地理科学进展 ›› 2022, Vol. 41 ›› Issue (7): 1226-1238.doi: 10.18306/dlkxjz.2022.07.007
收稿日期:
2021-12-23
修回日期:
2022-03-12
出版日期:
2022-07-28
发布日期:
2022-09-28
通讯作者:
*张学珍(1981— ),男,山东济宁人,研究员,主要从事陆气相互作用研究。E-mail: xzzhang@igsnrr.ac.cn作者简介:
王敏霞(1996— ),女,河南周口人,硕士生,主要从事气候变化影响研究。E-mail: wangmx1@qq.com
基金资助:
WANG Minxia1,2(), ZHANG Xuezhen1,3,*(
), JING Wenlong4
Received:
2021-12-23
Revised:
2022-03-12
Online:
2022-07-28
Published:
2022-09-28
Supported by:
摘要:
气候变化对径流的影响是全球变化研究领域的重点问题。论文采用BCC-CSM1-1模拟的过去千年(850—2012年)气候与水文变化数据,基于Budyko假设与傅抱璞公式开展了中世纪气候异常期(MCA)、小冰期(LIA)和现代暖期(MWP)黄河中、上游径流变化及其归因分析。结果表明:① 在3个气候特征期之间,上游地区径流与气候冷暖变化位相相同,MWP时期径流最高,LIA时期径流最低;中游地区径流则与气候冷暖变化位相相反,LIA径流最高,MCA径流最低。② 径流对各因子的敏感性不仅存在地理差异,而且受特征期之间气候冷暖转变的影响。中游地区径流对降水和潜在蒸发的弹性系数(绝对值)大于上游,且在冷转暖过程中的弹性系数(绝对值)略大于暖转冷过程。同时,持续偏暖过程中、上游地表变化的弹性系数(绝对值)均明显大于暖转冷与冷转暖过程。③ 3个特征期之间径流差异主要由降水主导,地表变化影响甚微,但潜在蒸发的作用存在地域差异,上游地区潜在蒸发部分抵消了降水变化的贡献而中游地区潜在蒸发则加强了降水导致的径流变化。研究量化了黄河流域各因子对过去千年百年尺度径流变化的贡献,明确了不同气候转变期各因子贡献的差异,为更好地研究径流量多尺度变化及其成因奠定了基础。
王敏霞, 张学珍, 荆文龙. 基于BCC-CSM1-1模拟的过去千年黄河中上游径流百年尺度变化的归因分析[J]. 地理科学进展, 2022, 41(7): 1226-1238.
WANG Minxia, ZHANG Xuezhen, JING Wenlong. Attribution analysis of centennial scale changes of runoff in the Yellow River Basin over the past millennium based on BCC-CSM1-1 simulation[J]. PROGRESS IN GEOGRAPHY, 2022, 41(7): 1226-1238.
表1
8个PMIP3/CMIP5模式的详细信息
模式名称 | 分辨率(大气模块) (经度×纬度×层数) | 分辨率(海洋模块) (经度×纬度×层数) | 研发机构 |
---|---|---|---|
BCC-CSM1-1 | 128×64×L40 | 360×232×L40 | 中国气象局北京气候中心 |
IPSL-CM5A-LR | 96×95×L40 | 182×149×L31 | 法国皮埃尔—西蒙·拉普拉斯研究所 |
GISS-E2-R | 144×90×L40 | 288×180×L32 | 美国宇航局戈达德太空研究所 |
CCSM4 | 288×192×L26 | 320×384×L60 | 美国国家大气研究中心 |
HadCM3 | 76×73×L19 | 288×144×L20 | 英国气象局哈德利气候预测和研究中心 |
MPI-ESM-P | 196×98×L47 | 256×220×L40 | 德国马普气象研究所 |
MRI-CGCM3 | 320×160×L48 | 364×368×L51 | 日本气象研究所 |
CSIRO-Mk3L-1-2 | 64×56×L18 | 128×112×L21 | 澳大利亚联邦科学与工业研究组织 |
[1] | 姜大膀, 王娜. IPCC AR6报告解读: 水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704. |
[ Jiang Dabang, Wang Na. Water cycle changes: Interpretation of IPCC AR6. Climate Change Research, 2021, 17(6): 699-704. ] | |
[2] |
孟德娟, 莫兴国. 气候变化对不同气候区流域年径流影响的识别[J]. 地理科学进展, 2013, 32(4): 587-594.
doi: 10.11820/dlkxjz.2013.04.011 |
[ Meng De juan, Mo Xingguo. Identification of impact of climate change on annual runoff in typical basins of different climate zones. Progress in Geography, 2013, 32(4): 587-594. ] | |
[3] | 张士锋, 华东, 孟秀敬, 等. 三江源气候变化及其对径流的驱动分析[J]. 地理学报, 2011, 66(1): 13-24. |
[ Zhang Shifeng, Hua Dong, Meng Xiujing, et al. Climate change and its driving effect on the runoff in the "Three-River Headwaters" region. Acta Geographica Sinica, 2011, 66(1): 13-24. ] | |
[4] | Huang S F, Zang W B, Xu M, et al. Study on runoff simulation of the upstream of Minjiang River under future climate change scenarios[J]. Natural Hazards, 2015, 75(2): 139-154. |
[5] |
Wang X L, Luo Y, Sun L, et al. Different climate factors contributing for runoff increases in the high glacierized tributaries of Tarim River Basin, China[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100845. doi: 10.1016/j.ejrh.2021.100845.
doi: 10.1016/j.ejrh.2021.100845 |
[6] |
McCabe G J, Wolock D M. Independent effects of temperature and precipitation on modeled runoff in the conterminous United States[J]. Water Resources Research, 2011, 47: W11522. doi: 10.1029/2011WR010630.
doi: 10.1029/2011WR010630 |
[7] |
Ji G X, Song H Y, Wei H J, et al. Attribution analysis of climate and anthropic factors on runoff and vegetation changes in the source area of the Yangtze River from 1982 to 2016 [J]. Land, 2021, 10(6): 612. doi: 10.3390/land10060612.
doi: 10.3390/land10060612 |
[8] |
Liu J L, Chen J, Xu J J, et al. Attribution of runoff variation in the headwaters of the Yangtze River based on the Budyko Hypothesis[J]. International Journal of Environmental Research and Public Health, 2019, 16(14): 2506. doi: 10.3390/ijerph16142506.
doi: 10.3390/ijerph16142506 |
[9] | Li B F, Chen Y N, Xiong H G. Quantitatively evaluating the effects of climate factors on runoff change for Aksu River in northwestern China[J]. Theoretical and Applied Climatology, 2016, 123(1/2): 97-105. |
[10] | Buendia C, Batalla R J, Sabater S, et al. Runoff trends driven by climate and afforestation in a Pyrenean basin[J]. Land Degradation & Development, 2016, 27(3): 823-838. |
[11] | Li Z X, Feng Q, Liu W, et al. Study on the contribution of cryosphere to runoff in the cold alpine basin: A case study of Hulugou River Basin in the Qilian Mountains[J]. Global and Planetary Change, 2014, 122: 345-361. |
[12] | Jiang C, Li D Q, Gao Y N, et al. Spatiotemporal variability of streamflow and attribution in the Three-Rivers Headwater Region, Northwest China[J]. Journal of Water and Climate Change, 2016, 7(3): 637-649. |
[13] | 郑子彦, 吕美霞, 马柱国. 黄河源区气候水文和植被覆盖变化及面临问题的对策建议[J]. 中国科学院院刊, 2020, 35(1): 61-72. |
[ Zheng Ziyan, Lv Meixia, Ma Zhuguo. Climate, hydrology, and vegetation coverage changes in source region of Yellow River and countermeasures for challenges. Bulletin of Chinese Academy of Sciences, 2020, 35(1): 61-72. ] | |
[14] | 王有恒, 谭丹, 韩兰英, 等. 黄河流域气候变化研究综述[J]. 中国沙漠, 2021, 41(4): 235-246. |
[ Wang Youheng, Tan Dan, Han Lanying, et al. Review of climate change in the Yellow River Basin. Journal of Desert Research, 2021, 41(4): 235-246. ] | |
[15] | 高鑫, 叶柏生, 张世强, 等. 1961-2006年塔里木河流域冰川融水变化及其对径流的影响[J]. 中国科学: 地球科学, 2010, 40(5): 654-665. |
[ Gao Xin, Ye Baisheng, Zhang Shiqiang, et al. Glacier runoff variation and its influence on river runoff during 1961-2006 in the Tarim River Basin, China. Scientia Sinica (Terrae), 2010, 40(5): 654-665. ] | |
[16] | 王玉洁, 秦大河. 气候变化及人类活动对西北干旱区水资源影响研究综述[J]. 气候变化研究进展, 2017, 13(5): 483-493. |
[ Wang Yujie, Qin Dahe. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Climate Change Research, 2017, 13(5): 483-493. ] | |
[17] | Berghuijs W R, Larsen J R, van Emmerik T H M, et al. A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors[J]. Water Resources Research, 2017, 53(10): 8475-8486. |
[18] |
Zeng F, Ma M G, Di D R, et al. Separating the impacts of climate change and human activities on runoff: A review of method and application[J]. Water, 2020, 12(8): 2201. doi: 10.3390/w12082201.
doi: 10.3390/w12082201 |
[19] |
葛全胜, 郑景云, 郝志新, 等. 过去2000年中国气候变化研究的新进展[J]. 地理学报, 2014, 69(9): 1248-1258.
doi: 10.11821/dlxb201409001 |
[ Ge Quansheng, Zheng Jingyun, Hao Zhixin, et al. State-of-the-arts in the study of climate changes over China for the past 2000 years. Acta Geographica Sinica, 2014, 69(9): 1248-1258. ]
doi: 10.11821/dlxb201409001 |
|
[20] | IPCC. Summary for policymakers [M]// Stocker T F, Qin D H, Plattner G K, et al. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report 1 of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013: 3-29. |
[21] | Wang H, Yang G Y, Jia Y W, et al. Necessity and feasibility for an ET-based modern water resources management strategy: A case study of soil water resources in the Yellow River Basin[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 3004-3016. |
[22] | Huang R H, Chen J L, Huang G. Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China[J]. Advances in Atmospheric Sciences, 2007, 24(6): 993-1023. |
[23] | Gao T, Wang H L. Trends in precipitation extremes over the Yellow River basin in North China: Changing properties and causes[J]. Hydrological Processes, 2017, 31(13): 2412-2428. |
[24] |
Tung Y S, Wang S Y S, Chu J L, et al. Projected increase of the East Asian summer monsoon (Meiyu) in Taiwan by climate models with variable performance[J]. Meteorological Applications, 2020, 27(1): e1886. doi: 10.1002/zmet.1886.
doi: 10.1002/zmet.1886 |
[25] | 鲍振鑫, 严小林, 王国庆, 等. 1956-2016年黄河流域河川径流演变规律[J]. 水资源与水工程学报, 2019, 30(5): 52-57. |
[ Bao Zhenxin, Yan Xiaolin, Wang Guoqing, et al. 1956-The trend in streamflow of the Yellow River Basin during 1956-2016. Journal of Water Resources and Water Engineering, 2019, 30(5): 52-57. ] | |
[26] | 黄建平, 张国龙, 于海鹏, 等. 黄河流域近40年气候变化的时空特征[J]. 水利学报, 2020, 51(9): 1048-1058. |
[ Huang Jianping, Zhang Guolong, Yu Haipeng, et al. Characteristics of climate change in the Yellow River Basin during recent 40years. Journal of Hydraulic Engineering, 2020, 51(9): 1048-1058. ] | |
[27] | Jiang D B, Yu G, Zhao P, et al. Paleoclimate modeling in China: A review[J]. Advances in Atmospheric Sciences, 2015, 32(2): 250-275. |
[28] | Bellucci A, Haarsma R, Bellouin N, et al. Advancements in decadal climate predictability: The role of nonoceanic drivers[J]. Reviews of Geophysics, 2015, 53(2): 165-202. |
[29] | Swingedouw D, Mignot J, Ortega P, et al. Impact of explosive volcanic eruptions on the main climate variability modes[J]. Global and Planetary Change, 2017, 150: 24-45. |
[30] |
Bonan G B, Doney S C. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models[J]. Science, 2018, 359: eaam8328. doi: 10.1126/science.aam8328.
doi: 10.1126/science.aam8328 |
[31] | Cox P M. Emergent constraints on climate-carbon cycle feedbacks[J]. Current Climate Change Reports, 2019, 5(4): 275-281. |
[32] | 周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报, 2020, 78(3): 332-350. |
[ Zhou Tianjun, Chen Ziming, Zou Liwei, et al. Development of climate and earth system models in China: Past achievements and new CMIP6 fesults. Acta Meteorologica Sinica, 2020, 78(3): 332-350. ] | |
[33] |
何艳虎, 陈晓宏, 林凯荣, 等. 东江流域近50年径流系数时空变化特征[J]. 地理研究, 2014, 33(6): 1049-1058.
doi: 10.11821/dlyj201406006 |
[ He Yanhu, Chen Xiaohong, Lin Kairong, et al. Temporal and spatial characteristics of runoff coefficient variations in the Dongjiang Basin during 1964-2012. Geographical Research, 2014, 33(6): 1049-1058. ] | |
[34] | Budyko M I. Climate and life[M]. London, UK: Academic Press, 1974. |
[35] | 傅抱璞. 论陆面蒸发的计算[J]. 大气科学, 1981, 5(1): 23-31. |
[ Fu Baopu. On the calculation of the evaporation from land surface. Chinese Journal of Atmospheric Sciences, 1981, 5(1): 23-31. ] | |
[36] |
Lv X Z, Zuo Z G, Ni Y X, et al. The effects of climate and catchment characteristic change on streamflow in a typical tributary of the Yellow River[J]. Scientific Reports, 2019, 9(2): 14535. doi: 10.1038/s41598-019-51115-x.
doi: 10.1038/s41598-019-51115-x |
[37] | 傅抱璞. 山地蒸发的计算[J]. 气象科学, 1996, 16(4): 328-335. |
[ Fu Baopu. On the calculation of evaporation from land surface in mountainous areas. Scientia Meteorologica Sinica, 1996, 16(4): 328-335. ] | |
[38] | 杨大文, 张树磊, 徐翔宇. 基于水热耦合平衡方程的黄河流域径流变化归因分析[J]. 中国科学: 技术科学, 2015, 45(10): 1024-1034. |
[ Yang Dawen, Zhang Shulei, Xu Xiangyu. Attribution analysis for runoff decline in Yellow River Basin during past fifty years based on Budyko hypothesis. Scientia Sinica (Technologica), 2015, 45(10): 1024-1034. ] | |
[39] | Chen J H, Chen F H, Feng S, et al. Hydroclimatic changes in China and surroundings during the medieval climate anomaly and little ice age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111. |
[40] | 王绍武, 黄建斌. 近千年中国东部夏季雨带位置的变化[J]. 气候变化研究进展, 2006, 2(3): 117-121, 145. |
[ Wang Shaowu, Huang Jianbin. The variations of geographical latitude of rain belts in summer over eastern China during the last millennium. Advances in Climate Change Research, 2006, 2(3): 117-121, 145. ] | |
[41] | 杜加强, 郭杨, 房孝磊, 等. 近50 a黄河上游气候变化趋势和干湿界线波动分析[J]. 干旱区研究, 2013, 30(2): 291-298. |
[ Du Jiaqiang, Guo Yang, Fang Xiaolei, et al. On the climate change and fluctuation of climate boundaries in the headwaters of the Yellow River Basin in recent 50 years. Arid Zone Research, 2013, 30(2): 291-298. ] | |
[42] |
宋文龙, 杨胜天, 路京选, 等. 黄河中游大尺度植被冠层截留降水模拟与分析[J]. 地理学报, 2014, 69(1): 80-89.
doi: 10.11821/dlxb201401008 |
[ Song Wenlong, Yang Shengtian, Lu Jingxuan, et al. Simulation and analysis of vegetation interception at a large scale in the middle reaches of Yellow River. Acta Geographica Sinica, 2014, 69(1): 80-89. ]
doi: 10.11821/dlxb201401008 |
|
[43] | 王国庆, 张建云, 刘九夫, 等. 中国不同气候区河川径流对气候变化的敏感性[J]. 水科学进展, 2011, 22(3): 307-314. |
[ Wang Guoqing, Zhang Jianyun, Liu Jiufu, et al. The sensitivity of runoff to climate change in different climatic regions in China. Advances in Water Science, 2011, 22(3): 307-314. ] | |
[44] | 王国庆, 王云璋, 康玲玲. 黄河上中游径流对气候变化的敏感性分析[J]. 应用气象学报, 2002, 13(1): 117-121. |
[ Wang Guoqing, Wang Yunzhang, Kang Lingling. Analysis on the sensitivity of runoff in Yellow River to climate change. Journal of Applied Meteorological Science, 2002, 13(1): 117-121. ] | |
[45] | Li D, Pan M, Cong Z T, et al. Vegetation control on water and energy balance within the Budyko framework[J]. Water Resources Research, 2013, 49(2): 969-976. |
[46] | Ning T T, Li Z, Liu W Z. Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework[J]. Hydrology and Earth System Sciences, 2017, 21(3): 1515-1526. |
[47] | 张建云, 张成凤, 鲍振鑫, 等. 黄淮海流域植被覆盖变化对径流的影响[J]. 水科学进展, 2021, 32(6): 813-823. |
[ Zhang Jianyun, Zhang Chengfeng, Bao Zhenxin, et al. Analysis of the effects of vegetation changes on runoff in the Huang-Huai-Hai River basin under global change. Advances in Water Science, 2021, 32(6): 813-823. ] | |
[48] | Scheiter S, Higgins S I. Impacts of climate change on the vegetation of Africa: An adaptive dynamic vegetation modelling approach[J]. Global Change Biology, 2009, 15(9): 2224-2246. |
[49] | 路娜, 胡维平, 邓建才, 等. 大气CO2浓度升高对植物影响的研究进展[J]. 土壤通报, 2011, 42(2): 477-482. |
[ Lu Na, Hu Weiping, Deng Jiancai, et al. Effects of elevated atmospheric CO2 concentrations on growth of plants. Chinese Journal of Soil Science, 2011, 42(2): 477-482. ] | |
[50] | 马晶晶, 袁金国. 基于模型模拟的植被NDVI与观测天顶角和LAI的关系[J]. 遥感技术与应用, 2014, 29(4): 539-546. |
[ Ma Jingjing, Yuan Jinguo. Relationship between NDVI, view zenith angle and LAI based on model simulation. Remote Sensing Technology and Application, 2014, 29(4): 539-546. ] | |
[51] |
Gou X H, Chen F H, Cook E, et al. Streamflow variations of the Yellow River over the past 593 years in western China reconstructed from tree rings[J]. Water Resources Research, 2007, 43(6): W06434. doi: 10.1029/2006WR005705.
doi: 10.1029/2006WR005705 |
[52] | 勾晓华, 邓洋, 陈发虎, 等. 黄河上游过去1234年流量的树轮重建与变化特征分析[J]. 科学通报, 2010, 55(33): 3236-3243. |
[ Gou Xiaohua, Deng Yang, Chen Fahu, et al. Tree ring based streamflow reconstruction for the upper Yellow River over the past 1234 years. Chinese Science Bulletin, 2010, 55(33): 3236-3243. ] | |
[53] | 孙军艳, 刘禹, 蔡秋芳, 等. 以树木年轮资料重建黄河上游大通河480年以来6-7月径流变化历史[J]. 海洋地质与第四纪地质, 2011, 31(3): 109-116. |
[ Sun Junyan, Liu Yu, Cai Qiufang, et al. Tree-ring base on June-July runoff reconstruction for the Datong River watershed western China since AD 1525. Marine Geology & Quaternary Geology, 2011, 31(3): 109-116. ] | |
[54] | Chen F H, Chen J H, Holmes J, et al. Moisture changes over the last millennium in arid Central Asia: A review, synthesis and comparison with monsoon region[J]. Quaternary Science Reviews, 2010, 29(7/8): 1055-1068. |
[1] | 刘哲, 兰措. 青海北川河流域径流变化的机理研究——基于模型和统计两种方法[J]. 地理科学进展, 2022, 41(2): 304-315. |
[2] | 胡庆芳, 曹士圯, 杨辉斌, 王银堂, 李伶杰, 王立辉. 汉江流域安康站日径流预测的LSTM模型初步研究[J]. 地理科学进展, 2020, 39(4): 636-642. |
[3] | 李伶杰, 王银堂, 胡庆芳, 刘勇, 刘定忠, 崔婷婷. 基于时变权重组合与贝叶斯修正的中长期径流预报[J]. 地理科学进展, 2020, 39(4): 643-650. |
[4] | 郝志新, 梁亚妮, 刘洋, 耿秀, 郑景云. 古丝绸之路沿线地区千年冷暖变化的若干特征[J]. 地理科学进展, 2018, 37(4): 485-494. |
[5] | 刘希林. 全球视野下崩岗侵蚀地貌及其研究进展[J]. 地理科学进展, 2018, 37(3): 342-351. |
[6] | 温小洁, 姚顺波, 赵敏娟. 基于降水条件的城镇化与植被覆盖协调发展研究[J]. 地理科学进展, 2018, 37(10): 1352-1361. |
[7] | 郭禹含, 王中根, 伍玉良. 多源再分析降水数据在拉萨河流域应用对比研究[J]. 地理科学进展, 2017, 36(8): 1033-1039. |
[8] | 徐苏, 张永勇, 窦明, 花瑞祥, 周宇建. 长江流域土地利用时空变化特征及其径流效应[J]. 地理科学进展, 2017, 36(4): 426-436. |
[9] | 李运刚, 何娇楠, 李雪. 基于SPEI和SDI指数的云南红河流域气象水文干旱演变分析[J]. 地理科学进展, 2016, 35(6): 758-767. |
[10] | 丁婧祎, 赵文武, 王军, 房学宁. 降水和植被变化对径流影响的尺度效应——以陕北黄土丘陵沟壑区为例[J]. 地理科学进展, 2015, 34(8): 1039-1051. |
[11] | 伊璇, 周丰, 王心宇, 杨永辉, 郭怀成. 基于SOM的流域分类和无资料区径流模拟[J]. 地理科学进展, 2014, 33(8): 1109-1116. |
[12] | 黄生志, 黄强, 王义民, 陈昱潼. 渭河径流年内分配变化特征及其影响因子贡献率分解[J]. 地理科学进展, 2014, 33(8): 1101-1108. |
[13] | 王彦君, 王随继, 苏腾. 1955-2010年松花江流域不同区段径流量变化影响因素定量评估[J]. 地理科学进展, 2014, 33(1): 65-75. |
[14] | 奚秀梅, 刘海隆. 塔里木河干流径流量变化与太阳黑子活动的关系[J]. 地理科学进展, 2013, 32(6): 880-886. |
[15] | 孟德娟, 莫兴国. 气候变化对不同气候区流域年径流影响的识别[J]. 地理科学进展, 2013, 32(4): 587-594. |
|