地理科学进展 ›› 2020, Vol. 39 ›› Issue (7): 1126-1139.doi: 10.18306/dlkxjz.2020.07.006
收稿日期:
2019-05-09
修回日期:
2019-07-09
出版日期:
2020-07-28
发布日期:
2020-09-28
作者简介:
孙赫(1992— ),男,山东淄博人,博士生,主要从事寒区水文过程模拟。E-mail: 基金资助:
Received:
2019-05-09
Revised:
2019-07-09
Online:
2020-07-28
Published:
2020-09-28
Supported by:
摘要:
论文对比分析了1980—2016年基于站点插值降水数据CMA(China Meteorological Administration)和APHRODITE(Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation)、卫星遥感降水数据PERSIANN-CDR(Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Climate Data Record)和GPM(Global Precipitation Measurement)、大气再分析数据GLDAS(Global Land Data Assimilation System)以及区域气候模式输出数据HAR(High Asia Refined analysis)在雅鲁藏布江7个子流域的降水时空描述,利用国家气象站点数据对各套降水数据进行单点验证,并以这6套降水数据驱动VIC(Variable Infiltration Capacity)大尺度陆面水文模型反向评估了各套降水产品在雅鲁藏布江各子流域径流模拟中的应用潜力。结果表明:① PERSIANN-CDR和GLDAS年均降水量最高(770~790 mm),其次是HAR和GPM(650~660 mm),CMA和APHRODITE年均降水量最低(460~500 mm)。除GPM外,其他降水产品在各子流域都能表现季风流域的降水特征,约70%~90%的年降水量集中在6—9月份。② 除PERSIANN-CDR和GLDAS外,其他降水产品皆捕捉到流域降水自东南向西北递减的空间分布特征。其中,HAR数据空间分辨率最高,表现出更详细的流域内部降水空间分布特征。③ 与对应网格内的国家气象站降水数据对比显示,APHRODITE、GPM和HAR降水整体低估(低估10%~30%),且严重低估的站点主要集中在下游(低估40%~120%)。PERSIANN-CDR和GLDAS整体表现为高估上游流域站点降水(高估28%~60%),但低估下游流域站点降水(低估11%~21%)。④ 在流域径流模拟上,当前的6套降水产品在精度或时段上仍无法满足水文模型模拟的需求。⑤ 通过水文模型反向评估,6套降水产品中区域气候模式输出的HAR在流域平均降水量和季节分配上更合理。
孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7): 1126-1139.
SUN He, SU Fengge. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin[J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1126-1139.
表1
雅鲁藏布江7个子流域基本信息"
拉孜 | 拉孜—奴各沙 | 日喀则 | 拉萨 | 奴各沙—羊村 | 羊村—奴下 | 奴下—巴昔卡 | |
---|---|---|---|---|---|---|---|
水文观测站 | 拉孜站 | 奴各沙站 | 日喀则站 | 拉萨站 | 羊村站 | 奴下站 | — |
经度位置/(°E) | 29.05 | 29.32 | 29.25 | 29.63 | 29.28 | 29.47 | 28.10 |
纬度位置/(°N) | 87.38 | 89.71 | 88.88 | 91.15 | 91.88 | 94.57 | 95.53 |
流域面积/km2 | 50553 | 45327 | 11064 | 26235 | 26599 | 41770 | 51507 |
流域平均海拔/m | 5370 | 4983 | 5353 | 5272 | 4767 | 4937 | 3711 |
研究时段 | 1980—2000年 | 1980—2000年 | 1980—2000年 | 1980—2000年 | 1980—2000年 | 1980—2000年 | — |
实测径流/(m3/s) | 172.18 | 202.15 | 55.16 | 300.02 | 163.87 | 920.31 | — |
对总径流贡献/% | 9.17 | 11.09 | 3.76 | 15.98 | 8.99 | 51.01 | — |
冰川面积/km2 | 835.40 | 145.90 | 129.50 | 266.50 | 458.14 | 1104.36 | 5351.76 |
冰川占比/% | 1.60 | 0.41 | 1.21 | 0.98 | 1.71 | 2.81 | 10.21 |
积雪覆盖比例/% | 15.58 | 7.12 | 6.98 | 23.08 | 10.21 | 24.25 | 31.97 |
表2
6套降水产品的基本信息"
降水数据 | 研究时段 | 时空分辨率 | 数据类别 | 来源 |
---|---|---|---|---|
CMA | 1980—2016年 | 1/12°、逐日 | 站点插值数据 | 国家气象局 |
APHRODITE | 1979—2007年 | 0.25°、逐日 | 基于站点数据 | Yatagai等[ |
PERSIANN-CDR | 1983—2016年 | 0.25°、6 h | 遥感卫星数据 | Ashouri等[ |
GPM | 2015—2016年 | 0.10°、逐日 | 遥感卫星数据 | Huffman等[ |
GLDAS | 1980—2016年 | 0.25°、3 h | 再分析数据 | Rodell等[ |
HAR | 2001—2013年 | 10 km、逐日 | 区域气候模式输出 | Maussion等[ |
表3
6套降水产品在雅鲁藏布江及其子流域的年均和季节降水量"
降水产品 | 年均 | 春季 | 夏季 | 秋季 | 冬季 | 降水产品 | 年均 | 春季 | 夏季 | 秋季 | 冬季 |
---|---|---|---|---|---|---|---|---|---|---|---|
拉孜 | 奴各沙—羊村 | ||||||||||
CMA | 325 | 50 | 177 | 60 | 37 | CMA | 385 | 35 | 282 | 66 | 2 |
APHRODITE | 254 | 33 | 152 | 44 | 25 | APHRODITE | 360 | 35 | 256 | 65 | 4 |
PERSIANN-CDR | 739 | 81 | 503 | 105 | 49 | PERSIANN-CDR | 803 | 118 | 527 | 140 | 17 |
GPM | 308 | 59 | 140 | 40 | 68 | GPM | 284 | 35 | 187 | 53 | 9 |
HAR | 466 | 50 | 287 | 68 | 61 | HAR | 495 | 70 | 318 | 96 | 12 |
GLDAS | 721 | 127 | 422 | 115 | 57 | GLDAS | 792 | 82 | 578 | 130 | 2 |
拉孜—奴各沙 | 羊村—奴下 | ||||||||||
CMA | 379 | 26 | 288 | 58 | 7 | CMA | 559 | 97 | 343 | 110 | 9 |
APHRODITE | 314 | 22 | 237 | 51 | 4 | APHRODITE | 537 | 94 | 329 | 103 | 11 |
PERSIANN-CDR | 814 | 104 | 541 | 143 | 27 | PERSIANN-CDR | 1025 | 193 | 609 | 190 | 33 |
GPM | 258 | 26 | 181 | 45 | 6 | GPM | 528 | 110 | 291 | 111 | 15 |
HAR | 545 | 59 | 369 | 101 | 15 | HAR | 719 | 135 | 396 | 161 | 28 |
GLDAS | 789 | 89 | 551 | 129 | 19 | GLDAS | 729 | 106 | 490 | 127 | 6 |
日喀则 | 奴下—巴昔卡 | ||||||||||
CMA | 343 | 27 | 261 | 53 | 2 | CMA | 705 | 177 | 350 | 158 | 20 |
APHRODITE | 328 | 28 | 242 | 55 | 3 | APHRODITE | 981 | 225 | 520 | 204 | 32 |
PERSIANN-CDR | 657 | 96 | 433 | 111 | 16 | PERSIANN-CDR | 883 | 204 | 465 | 177 | 36 |
GPM | 331 | 54 | 214 | 56 | 8 | GPM | 1011 | 263 | 498 | 218 | 32 |
HAR | 328 | 40 | 207 | 71 | 10 | HAR | 1430 | 328 | 657 | 337 | 108 |
GLDAS | 937 | 104 | 666 | 160 | 7 | GLDAS | 828 | 156 | 496 | 157 | 18 |
拉萨 | 雅鲁藏布江 | ||||||||||
CMA | 506 | 62 | 342 | 95 | 8 | CMA | 465 | 73 | 288 | 89 | 15 |
APHRODITE | 504 | 66 | 330 | 99 | 10 | APHRODITE | 500 | 84 | 305 | 96 | 16 |
PERSIANN-CDR | 765 | 122 | 484 | 140 | 19 | PERSIANN-CDR | 773 | 118 | 449 | 183 | 24 |
GPM | 414 | 70 | 246 | 85 | 13 | GPM | 660 | 135 | 400 | 105 | 19 |
HAR | 566 | 50 | 287 | 68 | 61 | HAR | 650 | 106 | 368 | 133 | 39 |
GLDAS | 566 | 55 | 411 | 97 | 3 | GLDAS | 786 | 123 | 509 | 131 | 24 |
表4
6套降水产品与相应网格内国家气象站点降水数据对比"
子流域 | 站点 | APHRODITE | GPM | PERSIANN-CDR | GLDAS | HAR | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
相关系数 | 相对误差/% | 相关系数 | 相对误差/% | 相关系数 | 相对误差/% | 相关系数 | 相对误差/% | 相关系数 | 相对误差/% | ||
拉孜 | 拉孜 | 0.57 | 9.00 | 0.88 | -2.03 | 0.57 | 59.51 | 0.38 | 59.01 | 0.60 | -42.27 |
拉孜—奴各沙 | 南木林 | 0.99 | -6.60 | 0.93 | -89.04 | 0.46 | 28.61 | 0.32 | 39.96 | 0.65 | -8.74 |
日喀则 | 日喀则 | 0.99 | -0.11 | 0.87 | -24.50 | 0.57 | 34.47 | 0.54 | 48.66 | 0.26 | -54.61 |
江孜 | 0.98 | 4.65 | 0.98 | 9.99 | 0.68 | 58.07 | 0.46 | 69.62 | 0.63 | -4.40 | |
拉萨 | 拉萨 | 0.99 | -7.71 | -0.14 | -34.29 | 0.17 | 37.23 | 0.47 | 34.43 | 0.21 | -139.09 |
当雄 | 0.93 | -0.77 | 0.89 | -20.13 | 0.42 | 23.28 | 0.62 | 15.83 | 0.25 | 35.88 | |
墨竹工卡 | 0.99 | -26.08 | 0.85 | -70.72 | 0.45 | 23.54 | 0.36 | 20.12 | 0.12 | -52.48 | |
奴各沙—羊村 | 泽当 | 0.99 | 3.44 | 0.88 | -10.57 | 0.39 | 57.02 | 0.54 | 46.46 | 0.19 | -13.82 |
尼木 | 0.94 | -0.39 | 0.89 | -51.80 | 0.87 | 45.24 | 0.65 | 55.20 | 0.20 | -32.65 | |
浪卡子 | 0.99 | 1.08 | 0.93 | 6.61 | 0.67 | 47.97 | 0.45 | 59.91 | 0.20 | 39.57 | |
贡嘎 | 0.88 | -13.44 | 0.89 | -33.30 | 0.45 | 42.21 | 0.47 | 50.70 | 0.15 | 18.15 | |
羊村—奴下 | 加查 | 0.99 | 7.74 | 0.91 | -42.40 | 0.49 | 52.73 | 0.15 | 31.54 | -0.20 | -55.70 |
米林 | 0.99 | -6.60 | 0.70 | 11.38 | 0.79 | 28.07 | 0.38 | 27.32 | 0.35 | -120.23 | |
林芝 | 0.98 | -3.58 | 0.98 | -9.63 | 0.64 | 29.81 | 0.41 | 8.91 | 0.09 | -49.92 | |
奴下—巴昔卡 | 嘉黎 | 0.99 | 6.26 | 0.08 | -34.49 | 0.38 | 29.59 | 0.26 | -19.39 | 0.03 | 18.09 |
波密 | 0.99 | -8.63 | 0.94 | -50.42 | 0.67 | -11.15 | 0.43 | -20.95 | 0.09 | -11.07 |
表5
CMA、APHRODITE、GLDAS 和PERSIANN-CDR驱动的VIC模型1980—2000年雅鲁藏布江各子流域模拟径流的纳什系数和相对误差"
子流域 | CMA | APHRODITE | GLDAS | PERSIANN-CDR | ||||
---|---|---|---|---|---|---|---|---|
纳什系数 | 相对误差/% | 纳什系数 | 相对误差/% | 纳什系数 | 相对误差/% | 纳什系数 | 相对误差/% | |
拉孜 | 0.40 | -29.9 | 0.60 | -28.6 | -19.90 | 301.9 | -51.60 | 383.6 |
拉孜—奴各沙 | 0.80 | -29.5 | 0.35 | -49.2 | -0.70 | 170.7 | -1.40 | 130.8 |
日喀则 | 0.50 | -41.7 | 0.20 | -56.3 | -12.70 | 264.8 | -3.30 | 159.2 |
拉萨 | 0.60 | -41.6 | 0.50 | -48.2 | 0.70 | -35.8 | 0.50 | 34.7 |
奴各沙—羊村 | 0.20 | -54.9 | -0.10 | -70.3 | -0.20 | 89.1 | 0.60 | 81.4 |
羊村—奴下 | -0.20 | -69.6 | -0.40 | -76.4 | 0.10 | -53.9 | 0.80 | 5.8 |
[1] |
Duan A M, Wu G X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 2005,24(7-8):793-807.
doi: 10.1007/s00382-004-0488-8 |
[2] |
Immerzeel W W, van Beek L P, Bierkens M F. Climate change will affect the Asian water towers[J]. Science, 2010,328:1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
[3] |
Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012,2(9):663-667.
doi: 10.1038/NCLIMATE1580 |
[4] | 刘天仇. 雅鲁藏布江水文特征[J]. 地理学报, 1999,54(S1):157-164. |
[ Liu Tianchou. Hydrological characteristics of Yarlung Zangbo River. Acta Geographica Sinica, 1999,54(Sl):157-164. ] | |
[5] |
杨志刚, 卓玛, 路红亚, 等. 1961—2010年西藏雅鲁藏布江流域降水量变化特征及其对径流的影响分析[J]. 冰川冻土, 2014,36(1):166-172.
doi: 10.7522/j.issn.1000-0240.2014.0021 |
[ Yang Zhigang, Zhuo Ma, Lu Hongya, et al. Characteristics of precipitation variation and its effects on runoff in the Yarlung Zangbo River basin during 1961-2010. Journal of Glaciology and Geocryology, 2014,36(1):166-172. ] | |
[6] | 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去, 现在与未来[J]. 科学通报, 2015,60(32):3025-3035. |
[ Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin, 2015,60(32):3025-3035. ] | |
[7] |
Yang W, Guo X F, Yao T D, et al. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier[J]. Journal of Geophysical Research, 2011,116(D14). doi: 10.1029/2010jd015183.
pmid: 24383048 |
[8] |
Chen X N, Long D, Liang S L, et al. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data[J]. Remote Sensing of Environment, 2018,215:284-299.
doi: 10.1016/j.rse.2018.06.021 |
[9] |
Li C H, Su F G, Yang D Q, et al. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014[J]. International Journal of Climatology, 2018,38(2):708-728.
doi: 10.1002/joc.2018.38.issue-2 |
[10] | Wu Q B, Zhang T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, 2010,115(D9). doi: 10.1029/2009JD012974. |
[11] |
Guo D L, Wang H J. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research: Atmospheres, 2013,118(11):5216-5230.
doi: 10.1002/jgrd.50457 |
[12] |
Zhang L L, Su F G, Yang D Q, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013,118(15):8500-8518.
doi: 10.1002/jgrd.50665 |
[13] |
黄浠, 王中根, 桑燕芳, 等. 雅鲁藏布江流域不同源降水数据质量对比研究[J]. 地理科学进展, 2016,35(3):339-348.
doi: 10.18306/dlkxjz.2016.03.008 |
[ Huang Xi, Wang Zhonggen, Sang Yanfang, et al. Precision of data in three precipitation datasets of the Yarlung Zangbo River Basin. Progress in Geography, 2016,35(3):339-348. ] | |
[14] |
吕洋, 杨胜天, 蔡明勇, 等. TRMM卫星降水数据在雅鲁藏布江流域的适用性分析[J]. 自然资源学报, 2013,28(8):1414-1425.
doi: 10.11849/zrzyxb.2013.08.014 |
[ Lv Yang, Yang Shengtian, Cai Mingyong, et al. The applicability analysis of TRMM precipitation data in the Yarlung Zangbo River Basin. Journal of Natural Resources, 2013,28(8):1414-1425. ] | |
[15] |
郭禹含, 王中根, 伍玉良. 多源再分析降水数据在拉萨河流域应用对比研究[J]. 地理科学进展, 2017,36(8):1033-1039.
doi: 10.18306/dlkxjz.2017.08.012 |
[ Guo Yuhan, Wang Zhonggen, Wu Yuliang. Comparison of applications of different reanalyzed precipitation data in the Lhasa River Basin based on HIMS model. Progress in Geography, 2017,36(8):1033-1039. ] | |
[16] |
Liu J T, Xu Z X, Bai J R, et al. Assessment and correction of the PERSIANN-CDR product in the Yarlung Zangbo River Basin, China[J]. Remote Sensing, 2018,10(12):2031. doi: 10.3390/rs10122031.
doi: 10.3390/rs10122031 |
[17] |
Tong K, Su F G, Yang D Q, et al. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals[J]. International Journal of Climatology, 2014,34(2):265-285.
doi: 10.1002/joc.3682 |
[18] | Qi W, Liu J G, Chen D L. Evaluations and improvements of GLDAS2.0 and GLDAS2.1 forcing data's applicability for basin scale hydrological simulations in the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2018,123(23):13128-13148. |
[19] |
Maussion F, Scherer D, Mölg T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high asia reanalysis[J]. Journal of Climate, 2014,27(5):1910-1927.
doi: 10.1175/JCLI-D-13-00282.1 |
[20] | Curio J, Maussion F, Scherer D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau[J]. Earth System Dynamics, 2015,6(1):109-124. |
[21] |
Yatagai A, Kamiguchi K, Arakawa O, et al. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. Bulletin of the American Meteorological Society, 2012,93(9):1401-1415.
doi: 10.1175/BAMS-D-11-00122.1 |
[22] |
Ashouri H, Hsu K, Sorooshian S, et al. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies[J]. Bulletin of the American Meteorological Society, 2015,96(1):69-83.
doi: 10.1175/BAMS-D-13-00068.1 |
[23] | Huffman G J, Bolvin D T, Braithwaite D, et al. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG) [R]. Algorithm theoretical basis document, Version 4.5. Greenbelt, USA: NASA, 2015. |
[24] |
Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004,85(3):381-394.
doi: 10.1175/BAMS-85-3-381 |
[25] |
Caraway N M, McCreight J L, Rajagopalan B. Multisite stochastic weather generation using cluster analysis and k-nearest neighbor time series resampling[J]. Journal of Hydrology, 2014,508:197-213.
doi: 10.1016/j.jhydrol.2013.10.054 |
[26] |
Nasseri M, Tavakol-Davani H, Zahraie B. Performance assessment of different data mining methods in statistical downscaling of daily precipitation[J]. Journal of Hydrology, 2013,492:1-14.
doi: 10.1016/j.jhydrol.2013.04.017 |
[27] |
Ver Hoef J M, Temesgen H. A comparison of the spatial linear model to Nearest Neighbor (k-NN) methods for forestry applications[J]. PLoS One, 2013,8(3):e59129. doi: 10.1371/journal.pone.0059129.
pmid: 23527110 |
[28] |
Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. A complete daily precipitation database for northeast Spain: Reconstruction, quality control, and homogeneity[J]. International Journal of Climatology, 2009,30(8):1146-1163.
doi: 10.1002/joc.v30:8 |
[29] |
Liang X, Lettenmaie D P, Wood E F, et al. A simple hydrologically based model of land-surface water and energy fluxes[J]. Journal of Geophysical Research: Atmospheres, 1994,99:14415-14428.
doi: 10.1029/94JD00483 |
[30] |
Liang X, Lettenmaie D P, Wood E F. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model[J]. Journal of Geophysical Research: Atmospheres, 1996,101(D16):21403-21422.
doi: 10.1029/96JD01448 |
[31] |
Cherkauer K A, Lettenmaier D P. Hydrologic effects of frozen soils in the upper Mississippi River basin[J]. Journal of Geophysical Research: Atmospheres, 1999,104(D16):19599-19610.
doi: 10.1029/1999JD900337 |
[32] |
Kan B Y, Su F G, Xu B Q, et al. Generation of high mountain precipitation and temperature data for a quantitative assessment of flow regime in the upper Yarkant Basin in the Karakoram[J]. Journal of Geophysical Research: Atmospheres, 2018,123(16):8462-8486.
doi: 10.1029/2017JD028055 |
[33] |
Meng F C, Su F G, Li Y, et al. Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019,124(6):2909-2931.
doi: 10.1029/2018JD029552 |
[34] |
Su F G, Zhang L L, Ou T H, et al. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau[J]. Global and Planetary Change, 2016,136:82-95.
doi: 10.1016/j.gloplacha.2015.10.012 |
[35] |
Tong K, Su F G, Yang D Q, et al. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau[J]. Journal of Hydrology, 2014,519:423-437.
doi: 10.1016/j.jhydrol.2014.07.044 |
[36] |
Zhao Q D, Ding Y J, Wang J, et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 2019,573:60-81.
doi: 10.1016/j.jhydrol.2019.03.043 |
[37] |
Immerzeel W W, Wanders N, Lutz A F, et al. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff[J]. Hydrology and Earth System Sciences, 2015,19(11):4673-4687.
doi: 10.5194/hess-19-4673-2015 |
[38] | Wortmann M, Bolch T, Menz C, et al. Comparison and correction of high-mountain precipitation data based on Glacio-hydrological modeling in the Tarim River headwaters (high Asia)[J]. Journal of Hydrometeorology, 2018,19(5):777-801. |
[1] | 陈瑞, 杨梅学, 万国宁, 王学佳. 基于水热变化的青藏高原土壤冻融过程研究进展[J]. 地理科学进展, 2020, 39(11): 1944-1958. |
[2] | 王婧, 李海蓉, 杨林生. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 2020, 39(10): 1677-1686. |
[3] | 周玉科. 青藏高原植被NDVI对气候因子响应的格兰杰效应分析[J]. 地理科学进展, 2019, 38(5): 718-730. |
[4] | 徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018, 37(7): 923-932. |
[5] | 吉振明. 青藏高原黑碳气溶胶外源传输及气候效应模拟研究进展与展望[J]. 地理科学进展, 2018, 37(4): 465-475. |
[6] | 朱燕, 侯光良, 兰措卓玛, 高靖易, 庞龙辉. 基于GIS的青藏高原史前交通路线与分区分析[J]. 地理科学进展, 2018, 37(3): 438-449. |
[7] | 张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223. |
[8] | 朱艳欣, 桑燕芳. 青藏高原降水季节分配的空间变化特征[J]. 地理科学进展, 2018, 37(11): 1533-1544. |
[9] | 刘翀, 朱立平, 王君波, 乔宝晋, 鞠建廷, 黄磊. 基于MODIS的青藏高原湖泊透明度遥感反演[J]. 地理科学进展, 2017, 36(5): 597-609. |
[10] | 王婷. 2009-2015年国际青藏高原研究文献计量分析——基于SCIE和ESI数据[J]. 地理科学进展, 2017, 36(4): 500-512. |
[11] | 吴致蕾, 刘峰贵, 张镱锂, 陈琼, 周强, 杨登兴. 清代青藏高原东北部河湟谷地林草地覆盖变化[J]. 地理科学进展, 2016, 35(6): 768-778. |
[12] | 黄浠, 王中根, 桑燕芳, 杨默远, 刘晓聪, 巩同梁. 雅鲁藏布江流域不同源降水数据质量对比研究[J]. 地理科学进展, 2016, 35(3): 339-348. |
[13] | 罗静, 陈琼, 刘峰贵, 张镱锂, 周强. 青藏高原河谷地区历史时期耕地格局重建方法探讨——以河湟谷地为例[J]. 地理科学进展, 2015, 34(2): 207-. |
[14] | 勾鹏, 叶庆华, 魏秋方. 2000-2013年西藏纳木错湖冰变化及其影响因素[J]. 地理科学进展, 2015, 34(10): 1241-1249. |
[15] | 姚檀栋. “第三极环境(TPE)”国际计划——应对区域未来环境生态重大挑战问题的国际计划①[J]. 地理科学进展, 2014, 33(7): 884-892. |
|