地理科学进展 ›› 2019, Vol. 38 ›› Issue (8): 1123-1135.doi: 10.18306/dlkxjz.2019.08.002
赖锡军
收稿日期:
2019-03-26
修回日期:
2019-06-28
出版日期:
2019-08-25
发布日期:
2019-08-25
作者简介:
赖锡军(1977— ),男,浙江遂昌人,研究员,博士,从事环境水力学研究。E-mail: xjlai@niglas.ac.cn
基金资助:
LAI Xijun
Received:
2019-03-26
Revised:
2019-06-28
Online:
2019-08-25
Published:
2019-08-25
Supported by:
摘要:
以流域为单元开展水环境多要素、多尺度过程的综合模拟已成为了自然地理学重要研究方向。水环境过程综合模拟模型可定量解析流域系统水环境变化,是流域水环境研究与管理的重要工具。论文围绕流域水环境过程模拟的发展历程和最新进展,梳理总结了流域非点源污染过程和河湖等受纳水体水环境过程模拟的理论方法和模型软件;面向模拟不确定性问题讨论了模型选择、开发与集成、率定验证等流域水环境过程综合模拟建模的关键环节;结合最新的研究进展及相关学科新方法新技术的发展,建议后续研究关注流域自然和人文多过程综合集成模拟(包括流域系统人与水环境耦合模拟、多过程综合集成模拟)以及新方法新技术应用(包括数据同化理论方法创新与应用、高性能计算技术和人工智能技术)。
赖锡军. 流域水环境过程综合模拟研究进展[J]. 地理科学进展, 2019, 38(8): 1123-1135.
LAI Xijun. A review of integrated water quality modeling for a watershed[J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1123-1135.
1 |
程国栋, 肖洪浪, 傅伯杰 , 等. 2014. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 29(4):431-437.
doi: 10.11867/j.issn.1001-8166.2014.04.0431 |
[ Chen G D, Xiao H L, Fu B J , et al, 2014. Advances in synthetic research on the eco-hydrological process of the Heihe River Basin. Advances in Earth Sciences, 29(4):431-437. ]
doi: 10.11867/j.issn.1001-8166.2014.04.0431 |
|
2 | 傅伯杰 . 2018. 新时代自然地理学发展的思考[J]. 地理科学进展, 37(1):1-7. |
[ Fu B J . 2018. Thoughts on the recent development of physical geography. Progress in Geography, 37(1):1-7. ] | |
3 | 李新 . 2013. 陆地表层系统模拟和观测的不确定性及其控制[J]. 中国科学(地球科学), 43(11):1735-1742. |
[ Li X . 2014. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Science China (Earth Sciences), 57(1):80-87. ] | |
4 | 芮孝芳 . 2013. 水文学原理 [M]. 北京: 高等教育出版社. |
[ Rui X F. 2013. Principle of hydrology. Beijing, China: Higher Education Press. ] | |
5 | 唐洪武, 雷燕, 顾正华 . 2008. 河网水流智能模拟技术及应用[J]. 水科学进展, 27(2):232-237. |
[ Tang H W, Lei Y, Gu Z H . 2008. Intelligence simulation technique for rivernet flow and its application. Advances in Water Science, 27(2):232-237. ] | |
6 | 田富强, 程涛, 芦由 , 等. 2018. 社会水文学和城市水文学研究进展[J]. 地理科学进展, 37(1):46-56. |
[ Tian F Q, Cheng T, Lu Y , et al. 2018. A review on socio-hydrology and urban hydrology. Progress in Geography, 37(1):46-56. ] | |
7 | 汪德爟 . 计算水力学理论与应用 [M]. 北京: 科学出版社, 2011. |
[ Wang D G. 2011. Computational hydraulics: The theory and application. Beijing, China: Science Press. ] | |
8 | 王浩, 严登华, 贾仰文 , 等. 2010. 现代水文水资源学科体系及研究前沿和热点问题[J]. 水科学进展, 21(4):479-489. |
[ Wang H, Yan D H, Jia Y W , et al. 2010. Subject system of modern hydrology and water resources and research frontiers and hot issues. Advances in Water Science, 21(4):479-489. ] | |
9 |
吴险峰, 刘昌明 . 2002. 流域水文模型研究的若干进展[J]. 地理科学进展, 21(4):341-357.
doi: 10.11820/dlkxjz.2002.04.007 |
[ Wu X F, Liu C M . 2002. Progress in watershed hydrological models. Progress in Geography, 21(4):341-357. ]
doi: 10.11820/dlkxjz.2002.04.007 |
|
10 |
夏军, 翟晓燕, 张永勇 . 2012. 水环境非点源污染模型研究进展[J]. 地理科学进展, 31(7):941-952.
doi: 10.11820/dlkxjz.2012.07.013 |
[ Xia J, Zhai X Y, Zhang Y Y . 2012. Progress in the research of water environmental nonpoint source pollution models. Progress in Geography, 31(7):941-952. ]
doi: 10.11820/dlkxjz.2012.07.013 |
|
11 | 赵人俊 . 1984. 流域水文模拟: 新安江模型与陕北模型 [M]. 北京: 水利电力出版社. |
[ Zhao R J. 1984. Watershed hydrological modeling: Xin'anjiang Model and Shaanbei Model. Beijing, China: Water Resources and Electric Power Press. ] | |
12 | Ajami N K, Duan Q, Sorooshian S . 2007. An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction[J]. Water Resources Research, 43. doi: 10.1029/2005WR004745. |
13 | Alexandrov G A, Ames D, Bellocchi G , et al. 2011. Technical assessment and evaluation of environmental models and software: Letter to the editor[J]. Environmental Modelling & Software, 26:328-336. doi: 10.1016/j.envsoft.2010.08.004. |
14 | Allen J I, Polimene L . 2011. Linking physiology to ecology: towards a new generation of plankton models[J]. Journal of Plankton Research, 33:989-997. doi: 10.1093/plankt/fbr032. |
15 | Ambrose J, Wool T A, Barnwell J . 2009. Development of water quality modeling in the United States[J]. Environmental Engineering Research, 14:200-210. |
16 | Ambrose R B, Wool T A . 2009. WASP7 Stream transport model theory and user's guide, supplement to water quality analysis simulation program (WASP) user documentation [R]. EPA/600/R-09/100. Washington, DC, USA: U.S. Environmental Protection Agency. |
17 | Arhonditsis G B, Adams-Vanharn B A, Nielsen L , et al. 2006. Evaluation of current state of mechanistic aquatic biogeochemical modeling: Citation analysis and future perspectives[J]. Environmental Science and Technology, 40:6547-6554. |
18 | Arnold J G, Srinivasan R, Muttiah R S , et al. 1998. Large area hydrologic modeling and assessment part I: Model development[J]. Journal of the American Water Resources Association, 34:73-89. |
19 | Arnold J G, Youssef M A, Yen H , et al. 2015. Hydrological processes and model representation: Impact of soft data on calibration[J]. Transactions of the ASABE, 58(6):1637-1660. |
20 | ASABE. 2017. Guidelines for calibrating, validating, and evaluating hydrologic and water quality (H/WQ) models [R]. The American Society of Agricultural and Biological Engineers. ASABE EP621. |
21 | Bennett N D, Croke B F W, Guariso G , et al. 2013. Characterising performance of environmental models[J]. Environmental Modelling & Software, 40:1-20. doi: 10.1016/j.envsoft.2012.09.011. |
22 | Beven K, Binley A , 1992. The future of distributed models: Model calibration and uncertainty prediction[J]. Hydrological Processes, 6(3):279-298. |
23 | Bicknell B R, Imhoff J C, Kittle J L , et al. 2001. Hydrological Simulation Program-Fortran (HSPF): User's manual for release 12[R]. US Environment Protection Agency, Athens, Ga. |
24 | Blocken B, Gualtieri C . 2012. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics[J]. Environmental Modelling & Software, 33:1-22. doi: 10.1016/j.envsoft.2012.02.001. |
25 | Blöschl G . 2006. On the Fundamentals of Hydrological Sciences[M]// Anderson M G, McDonnell J J. Encyclopedia of hydrological sciences. Wiley. doi: 10.1002/0470848944.hsa001a. |
26 | Borah D K, Bera M . 2003. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases[J]. Transactions of the ASAE, 46:1553-1566. |
27 | Borah D K, Bera M . 2004. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications[J]. Transactions of the ASAE, 47:789-803. |
28 | Butenschon M, Zavatarelli M, Vichi M . 2012. Sensitivity of a marine coupled physical biogeochemical model to time resolution, integration scheme and time splitting method[J]. Ocean Modelling, 52-53:36-53. |
29 | Cerco C F, Noel M R . 2013. Twenty-one-year simulation of Chesapeake Bay water quality using the CE-QUAL-ICM eutrophication model[J]. Journal of the American Water Resources Association, 49(5):1119-1133. |
30 | Chapra S C . 2003. Engineering water quality models and TMDLs[J]. Journal of Water Resources Planning and Management, 129(4):247-256. |
31 | Chen Q, Mynett A E . 2006. Modelling algal blooms in the Dutch coastal waters by integrated numerical and fuzzy cellular automata approaches[J]. Ecological Modelling, 199:73-81. doi: 10.1016/j.ecolmodel.2006.06.014. |
32 | Cox B A . 2003. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers[J]. Science of the Total Environment, 314- 316:335-377. doi: 10.1016/S0048-9697(03)00063-9. |
33 | Crawford N H, Linsle R K . 1966. Digital simulation in hydrology, Stanford watershed model IV, Technical report No. 39 [R]. Stanford, USA: Department of Civil Engineering, Stanford University. |
34 | Dazzi S, Vacondio R, Mignosa P . 2019. Integration of a levee breach erosion model in a GPU-accelerated 2D shallow water equations code[J]. Water Resources Research, 55:682-702. doi: 10.1029/2018WR023826. |
35 | Dibike Y B, Solomatine D, Abbott M B . 1999. On the encapsulation of numerical-hydraulic models in artificial neural network[J]. Journal of Hydraulic Research, 37(2):147-161. |
36 | Donigian A S J, Crawford N H . 1976. Modeling pesticides and nutrients on agricultural lands [R]. EPA-600/3-76-043. U.S. Environmental Protection Agency. |
37 | Elshafei Y, Coletti J Z, Sivapalan M , et al. 2015. A model of the socio- hydrologic dynamics in a semiarid catchment: Isolating feedbacks in the coupled human-hydrology system[J]. Water Resources Research, 51(8):6442-6471. |
38 | EPA. 2009. Guidance on the development, evaluation, and application of environmental models [R]. EPA/100/K-09/003. US Environmental Protection Agency. |
39 | Flynn K J . 2005. Castles built on sand: Dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers[J]. Journal of Plankton Research, 27(12):1205-1210. doi: 10.1093/plankt/fbi099. |
40 | Fu B, Merritt W S, Croke B F W , et al. 2019. A review of catchment-scale water quality and erosion models and a synjournal of future prospects[J]. Environmental Modelling & Software, 114:75-97. |
41 | García-Alba J, Bárcena J F, Ugarteburu C, García A . 2019. Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries[J]. Water Research, 150:283-295. doi: 10.1016/j.watres.2018.11.063. |
42 | Gong Y, Shen Z, Hong Q, Liu R, Liao Q . 2011. Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology[J]. Agriculture, Ecosystems & Environment, 142:246-255. doi: 10.1016/j.agee.2011.05.015. |
43 | Graham D N, Butts M B. 2005. Flexible, integrated watershed modelling with MIKE SHE [M]// Singh V P, Frevert D K. Watershed Models. Boca Raton, USA: CRC Press: 245-272. |
44 | Harmel R D, Baffaut C, Douglas-Mankin K . 2018. Review and Development of ASABE Engineering Practice 621: "Guidelines for Calibrating, Validating, and Evaluating Hydrologic and Water Quality Models"[J]. Transactions of the ASABE, 61:1393-1401. doi: 10.13031/trans.12806. |
45 | Harmel R D, Smith P K, Migliaccio K W , et al. 2014. Evaluating, interpreting, and communicating performance of hydrologic/water quality models considering intended use: A review and recommendations[J]. Environmental Modelling & Software, 57:40-51. doi: 10.1016/j.envsoft.2014.02.013. |
46 | Hollaway M J, Beven K J, Benskin C M H , et al. 2018. The challenges of modelling phosphorus in a headwater catchment: Applying a 'limits of acceptability' uncertainty framework to a water quality model[J]. Journal of Hydrology, 558:607-624. doi: 10.1016/j.jhydrol.2018.01.063. |
47 | Imhoff J, Donigian A. 2005. History and evolution of watershed modeling derived from the stanford watershed model [M] // Singh V P, Frevert D K. Watershed models. Boca Raton, USA: CRC Press: 2-45. doi: 10.1201/9781420037432.ch2. |
48 | Jakeman A J, Letcher R A, Norton J P . 2006. Ten iterative steps in development and evaluation of environmental models[J]. Environmental Modelling & Software, 21:602-614. doi: 10.1016/j.envsoft.2006.01.004. |
49 | Javaheri A, Babbar-Sebens M, Miller R N , et al. 2019. An adaptive ensemble Kalman filter for assimilation of multi-sensor, multi-modal water temperature observations into hydrodynamic model of shallow rivers[J]. Journal of Hydrology, 572:682-691. doi: 10.1016/j.jhydrol.2019.03.036. |
50 | Jin X, Xu C-Y, Zhang Q , et al. 2010. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model[J]. Journal of Hydrology, 383:147-155. doi: 10.1016/j.jhydrol.2009.12.028. |
51 | Jørgensen S E, Fath B D . 2011. Fundamentals of ecological modelling: Applications in environmental management and research[M]. Amsterdam, Netherland: Elsevier. |
52 | Kim S, Seo D-J, Riazi H , et al. 2014. Improving water quality forecasting via data assimilation-Application of maximum likelihood ensemble filter to HSPF[J]. Journal of Hydrology, 519:2797-2809. doi: 10.1016/j.jhydrol.2014.09.051. |
53 | Lacasta A, Morales-Hernández M, Murillo J , et al. 2015. GPU implementation of the 2D shallow water equations for the simulation of rainfall/runoff events[J]. Environmental Earth Sciences, 74:7295-7305. doi: 0.1007/s12665-015-4215-z. |
54 | Lai X, Liang Q, Yesou H , et al. 2014. Variational assimilation of remotely sensed flood extents using a 2-D flood model[J]. Hydrology and Earth System Sciences, 18:4325-4339. doi: 10.5194/hess-18-4325-2014. |
55 | Liang Q, Smith L S . 2015. A high-performance integrated hydrodynamic modelling system for urban flood simulations[J]. Journal of Hydroinformatics, 17:518-533. doi: 10.2166/hydro.2015.029. |
56 | Lindenschmidt K-E, Fleischbein K, Baborowski M . 2007. Structural uncertainty in a river water quality modelling system[J]. Ecological Modelling, 204:289-300. doi: 10. 1016/j.ecolmodel.2007.01.004 |
57 | Liu Y, Gupta H V . 2007. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework[J]. Water Resources Research, 43. doi: 10.1029/2006WR005756. |
58 | Lu Z, Wei Y, Feng Q , et al. 2018. A framework for incorporating social processes in hydrological models[J]. Current Opinion in Environmental Sustainability, System Dynamics and Sustainability, 33:42-50. doi: 10.1016/j.cosust.2018.04.011. |
59 | Margvelashvili N, Parslow J S, Herzfeld M , et al. 2010. Development of operational data-assimilating water quality modelling system for South-East Tasmania[M] // OCEANS'10 IEEE Sydney. Presented at the OCEANS 2010 IEEE - Sydney, IEEE, Sydney, Australia:1-5. doi: 10.1109/OCEANSSYD.2010.5603601. |
60 | Martin P H, LeBoeuf E J, Dobbins J P , et al. 2005. Interfacing GIS with water resource models: A state-of-the-art review[J]. Journal of the American Water Resources Association, 41:1471-1487. doi: 10.1111/j.1752-1688.2005.tb03813.x. |
61 | Mitro M G . 2001. Ecological model testing: Verification, validation, or neither?[J]. Bulletin of the Ecological Society of America, 82:235-236. |
62 | Mohamoud Y, Zhang H . 2019. Applications of linked and nonlinked complex models for TMDL development: Approaches and challenges[J]. Journal of Hydrologic Engineering, 24, 04018055. doi: 10.1061/(ASCE)HE.1943-5584. 0001721. |
63 | O'Connor D J . 1967. The temporal and spatial distribution of dissolved oxygen in streams[J]. Water Resources Research, 3(1):65-79. |
64 | Oreskes N, Shrader-Frechette K, Belitz K . 1994. Verification, validation, and confirmation of numerical models in the earth sciences[J]. Science, 263:641-646. doi: 10.1126/science.263.5147.641. |
65 | Park K, Kuo A Y . 1996. A multi-step computation scheme: Decoupling kinetic processes from physical transport in water quality models[J]. Water Research, 30(10):2255-2264. |
66 | Parker P, Letcher R, Jakeman A , et al. 2002. Progress in integrated assessment and modelling[J]. Environmental Modelling & Software, 17:209-217. doi: 10.1016/S1364-8152(01)00059-7. |
67 | Paudel R, Jawitz J W . 2012. Does increased model complexity improve description of phosphorus dynamics in a large treatment wetland?[J]. Ecological Engineering, 42:283-294. doi: 10.1016/j.ecoleng.2012.02.014. |
68 | Pianosi F, Beven K, Freer J , et al. 2016. Sensitivity analysis of environmental models: A systematic review with practical workflow[J]. Environmental Modelling & Software, 79:214-232. doi: 10.1016/j.envsoft.2016.02.008. |
69 | Reckhow K H, Chapra S C . 1983. Confirmation of water quality models[J]. Ecological Modelling, 20(2-3):113-133. |
70 | Reichle R H . 2008. Data assimilation methods in the Earth sciences[J]. Advances in Water Resources, 31(11):1411-1418. |
71 | Robson B J, Hamilton D P, Webster I T , et al. 2008. Ten steps applied to development and evaluation of process-based biogeochemical models of estuaries[J]. Environmental Modelling & Software, 23:369-384. doi: 10.1016/j.envsoft.2007.05.019. |
72 | Rode M, Arhonditsis G, Balin D , et al. 2010. New challenges in integrated water quality modelling[J]. Hydrological Processes, 24:3447-3461. doi: 10.1002/hyp.7766. |
73 | Rykiel E J . 1996. Testing ecological models: The meaning of validation[J]. Ecological Modeling, 90:229-244. |
74 | Saltelli A, Aleksankina K, Becker W , et al, 2019. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices[J]. Environmental Modelling & Software, 114:29-39. doi: 10.1016/j.envsoft.2019.01.012. |
75 | Seibert J, McDonnell J J . 2003. The quest for an improved dialog between modeler and experimentalist[J]. Water Science and Applications, 6:301-316. |
76 | Seidl R, Barthel R . 2017. Linking scientific disciplines: Hydrology and social sciences[J]. Journal of Hydrology, 550:441-452. doi: 10.1016/j.jhydrol.2017.05.008. |
77 | Seifi A, Riahi-Madvar H . 2019. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models[J]. Environmental Science and Pollution Research, 26:867-885. doi: 10.1007/s11356-018-3613-7. |
78 | Sharma D, Kansal A . 2013. Assessment of river quality models: A review[J]. Reviews in Environmental Science and Bio/Technology, 12:285-311. doi: 10.1007/s11157-012-9285-8. |
79 | Shen C . 2018. A transdisciplinary review of deep learning research and its relevance for water resources scientists[J]. Water Resources Research, 54:8558-8593. doi: 10.1029/2018WR022643. |
80 | Simões F J M . 2011. Finite volume model for two-dimensional shallow environmental flow[J]. Journal of Hydrological Engineering, 137:173. doi: 10.1061/(ASCE)HY.1943-7900.0000292. |
81 | Singh V P, Woolhiser D A , 2002. Mathematical modeling of watershed hydrology[J]. Journal of Hydrologic Engineering, 7:270-292. doi: 10.1061/(ASCE)1084-0699(2002)7:4(270). |
82 | Sivapalan M, Savenije H H G, Blöschl G . 2012. Socio-hydrology: A new science of people and water[J]. Hydrological Processes, 26:1270-1276. doi: 10.1002/hyp.8426. |
83 | Snowling S D, Kramer J R . 2001. Evaluating modelling uncertainty for model selection[J]. Ecological Modelling, 138(1-3):17-30. |
84 | Song X, Zhang J, Zhan C , et al. 2015. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications[J]. Journal of Hydrology, 523:739-757. doi: 10.1016/j.jhydrol.2015.02.013. |
85 | Thomann R V . 1998. The Future "Golden Age" of Predictive Models for Surface Water Quality and Ecosystem Management[J]. Journal of Environmental Engineering, 124:94-103. doi: 10.1061/(ASCE)0733-9372(1998)124:2(94). |
86 | Todini E . 2007. Hydrological catchment modelling: Past, present and future[J]. Hydrology and Earth System Sciences, 11:468-482. doi: 10.5194/hess-11-468-2007. |
87 | Toro E F, Garcia-Navarro P . 2007. Godunov-type methods for free-surface shallow flows: A review[J]. Journal of Hydraulic Research, 45(6):736-751. |
88 | Volk M, Liersch S, Schmidt G . 2009. Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed[J]. Land Use Policy, 26(3):580-588. |
89 | Wellen C, Kamran-Disfani A-R, Arhonditsis G B . 2015. Evaluation of the current state of distributed watershed nutrient water quality modeling[J]. Environmental Science & Technology, 49:3278-3290. doi: 10.1021/es5049557. |
90 | Whittemore R C, Beebe J . 2000. EPA's basins model: Good science or serendipitous modeling?[J]. Journal of the American Water Resources Association, 36(3):493-499. |
91 | Xie H, Wei G, Shen Z , et al. 2019. Event-based uncertainty assessment of sediment modeling in a data-scarce catchment[J]. CATENA, 173:162-174. doi: 10.1016/j.catena.2018.10.008. |
92 | Yang Y S, Wang L . 2010. A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution[J]. Water Resources Management, 24:1819-1843. doi: 10.1007/s11269-009-9526-y. |
93 | Yen H, Bailey R T, Arabi M , et al. 2014. The role of interior watershed processes in improving parameter estimation and performance of watershed models[J]. Journal of Environment Quality, 43, 1601. doi: 10.2134/jeq2013.03.0110. |
94 | Zheng Y, Han F, Tian Y , et al. 2014. Chapter 5 Addressing the uncertainty in modeling watershed nonpoint source pollution[M]// Jørgensen S E, Chang N B, Xu F L. Developments in environmental modelling, ecological modelling and engineering of lakes and wetlands. Elsevier:113-159. doi: 10.1016/B978-0-444-63249-4.00006-3. |
95 | Zhu Z, Chen Z, Chen X , et al. 2019. An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives[J]. Journal of Environmental Management, 231:504-514. |
[1] | 史卓琳, 黄昌. 河流水情要素遥感研究进展[J]. 地理科学进展, 2020, 39(4): 670-684. |
[2] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
[3] | 朱阿兴, 朱良君, 史亚星, 秦承志, 刘军志. 流域系统综合模拟与情景分析——自然地理综合研究的新范式?[J]. 地理科学进展, 2019, 38(8): 1111-1122. |
[4] | 吴辉, 刘永波, 朱阿兴, 杨典华, 刘军志. 流域最佳管理措施空间配置优化研究进展[J]. 地理科学进展, 2013, 32(4): 570-579. |
[5] | 夏军, 翟晓燕, 张永勇. 水环境非点源污染模型研究进展[J]. 地理科学进展, 2012, 31(7): 941-952. |
[6] | 李名升, 张建辉, 梁念, 林兰钰, 李茜, 温香彩. 常用水环境质量评价方法分析与比较[J]. 地理科学进展, 2012, 31(5): 617-624. |
[7] | 郭燕莎, 王劲峰, 殷秀兰. 地下水监测网优化方法研究综述[J]. 地理科学进展, 2011, 30(9): 1159-1166. |
[8] | 刘珍环, 李猷, 彭建, . 城市不透水表面的水环境效应研究进展[J]. 地理科学进展, 2011, 30(3): 275-281. |
[9] | 黄耀欢, 王浩, 肖伟华, 秦大庸. 内陆水体环境遥感监测研究评述[J]. 地理科学进展, 2010, 29(5): 549-556. |
[10] | 侯西勇1|张安定2|王传远1|王秋贤2|应兰兰1. 海岸带陆源非点源污染研究进展[J]. 地理科学进展, 2010, 29(1): 73-78. |
[11] | 姚鑫1, 2, 3|杨桂山1, 3. 自然湿地水质净化研究进展[J]. 地理科学进展, 2009, 28(5): 825-832. |
[12] | 岳隽, 王仰麟, 李贵才, 吴健生. 基于水环境保护的流域景观格局 优化理念初探[J]. 地理科学进展, 2007, 26(3): 38-46. |
[13] | 梁涛, 王浩, 丁士明, 薛金凤, 蔡春霞, 张秀梅. 官厅水库近三十年的水质演变时序特征[J]. 地理科学进展, 2003, 22(1): 38-44. |
[14] | 许珺, 傅肃性, 黄绚. 台湾基隆河流域水质与环境遥感制图及分析[J]. 地理科学进展, 1999, 18(3): 267-273. |
|