Please wait a minute...
PROGRESS IN GEOGRAPHY
 
引用检索 快速检索 图表检索 高级检索
地理科学进展    2019, Vol. 38 Issue (5): 772-782     DOI: 10.18306/dlkxjz.2019.05.013
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
红水河流域输沙量变化及其影响因素
薛天翼(),武旭同,朱晨怡,王红亚()
北京大学城市与环境学院,北京 100871
Change of sediment load and its influencing factors in the Hongshui River Basin in Southwestern China
XUE Tianyi(),WU Xutong,ZHU Chenyi,WANG Hongya()
College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
全文: PDF (3918 KB)   HTML
输出: BibTeX | EndNote (RIS)      背景资料
文章导读  
摘要 

红水河是珠江流域的主要泥沙来源,为了确定1955—2016年红水河流域输沙量变化特征及其影响因素,论文尝试采用有序聚类分析确定了流域输沙量变化的3个时期,并利用泥沙归因诊断分析计算了含沙量、径流系数和降雨因子在不同时期对输沙量变化的贡献程度,在此基础上进一步对影响输沙量变化的主要因素进行了分析。研究表明:1955—2016年间红水河流域输沙量存在1963和1991年2个突变点,在突变点前后输沙量存在明显变化,且这一变化主要受含沙量因子控制,人类活动是造成流域输沙量变化的根本原因。其中在1955—1991年间,红水河输沙量的上升主要由毁林开荒引起的流域水土流失面积增加所导致;而在1964—2016年间,水库修建使红水河流域输沙量减少了83.49%,而同时期植被覆盖度的增长贡献了输沙量减少的12.03%。将WaTEM/SEDEM模型模拟结果与实测结果进行对比,同样发现1964—2016年输沙量变化的绝大部分(81.03%)由修建水库所贡献,而土地利用变化对输沙量减少的贡献相对较小(18.97%)。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛天翼
武旭同
朱晨怡
王红亚
关键词 红水河流域输沙量泥沙归因诊断水库植被覆盖度 
Abstract

Hongshui River Basin in Southwestern China is the main sediment source of the Pearl River. In order to determine the features of sediment load and its influencing factors in the basin from 1955 to 2016, this study identified three periods of sediment load change by using rank order cluster analysis, and calculated the contribution of average precipitation, water yield capacity, and sediment concentrations to the change of sediment load by means of sediment source attribution. On this basis, the main factors affecting the change of sediment load were further analyzed. The results suggest that 1963 and 1991 were the two turning points of sediment load at the Qianjiang Station in the basin. Due to the variation of sediment concentration, sediment load changed greatly before and after these two points, and human activities were the main driving force of the change of sediment load in this basin. During 1955-1991, the increase of sediment load in the Hongshui River was mainly caused by the increase of soil erosion as a result of deforestation and reclamation in the basin. From 1964 to 2016, 83.49% of the total sediment load reduction was caused by reservoir construction, while the increase of vegetation coverage contributed 12.03% to the decrease of sediment load in the same period. Comparing the results of the WaTEM/SEDEM model with the above results, it is also found that reservoir construction accounted for the vast majority (81.03%) of the total reduction between 1964 and 2016, while the contribution of land-use change to the reduction of sediment load was relatively small (18.97%).

Key wordsHongshui River Basin    sediment load    sediment source attribution    reservoir    vegetation coverage
收稿日期: 2018-12-11      出版日期: 2019-05-28
PACS:     
基金资助:国家自然科学基金项目(41571130044)
通讯作者: 王红亚     E-mail: xty@pku.edu.cn;why@urban.pku.edu.cn
引用本文:   
薛天翼, 武旭同, 朱晨怡等 . 红水河流域输沙量变化及其影响因素[J]. 地理科学进展, 2019, 38(5): 772-782.
XUE Tianyi, WU Xutong, ZHU Chenyi et al . Change of sediment load and its influencing factors in the Hongshui River Basin in Southwestern China[J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 772-782.
链接本文:  
http://www.progressingeography.com/CN/10.18306/dlkxjz.2019.05.013      或      http://www.progressingeography.com/CN/Y2019/V38/I5/772
1 戴仕宝, 杨世伦, 蔡爱民. 2007. 51年来珠江流域输沙量的变化[J]. 地理学报, 62(5): 545-554.
[Dai S B, Yang S L, Cai A M.2007. Variation of sediment discharge of the Pearl River Basin from 1955 to 2005. Acta Geographica Sinica, 62(5): 545-554. ]
2 李春梅, 王红亚. 2010. 贵州省西南部麦岗水库沉积物的137Cs和210Pb测年与沉积速率研究[J]. 水土保持通报, 30(2): 215-219.
[Li C M, Wang H Y.2010. 137Cs and 210Pb dating and inference of sedimentation rate for Maigang Reservoir in southwest Guizhou Province. Bulletin of Soil and Water Conservation, 30(2): 215-219. ]
3 李阳兵, 侯建筠, 谢德体. 2002. 中国西南岩溶生态研究进展[J]. 地理科学, 22(3): 365-370.
[Li Y B, Hou J J, Xie D T.2002. The recent development of research on Karst ecology in Southwest China. Scientia Geographica Sinica, 22(3): 365-370. ]
4 刘成, 王兆印, 隋觉义. 2007. 我国主要入海河流水沙变化分析[J]. 水利学报, 38(12): 1444-1452.
[Liu C, Wang Z Y, Sui J Y.2007. Analysis on variation of seagoing water and sediment load in main rivers of China. Journal of Hydraulic Engineering, 38(12): 1444-1452. ]
5 卢鑫, 赵红莉, 杨树文, . 2016. 雅砻江流域二滩水库周边植被变化[J]. 水土保持通报, 36(3): 148-159.
[Lu X, Zhao H L, Yang S W, et al.2016. Vegetation changes around Ertan reservoir in Yalongjiang River. Bulletin of Soil and Water Conservation, 36(3): 148-159. ]
6 覃杰, 钟华昌. 2003. 岩滩水库泥沙淤积分析[J]. 红水河, (S1): 68-73.
[Qin J, Zhong H C.2003. Sediment deposition in Yantan Reservoir. Hongshuihe River, (S1): 68-73. ]
7 任美锷. 2006. 黄河的输沙量: 过去、现在和将来: 距今15万年以来的黄河泥沙收支表[J]. 地球科学进展, 21(6): 551-563.
[Ren M E.2006. Sediment discharge of the Yellow River, China: Past, present and future: A synthesis. Advances in Earth Science, 21(6): 551-563. ]
8 沈鸿金, 王永勇. 2009. 珠江泥沙主要来源及时空变化初步分析[J]. 人民珠江, 30(2): 39-42.
[Shen H J, Wang Y Y.2009. Primary analysis of main silt sources and temporal and spatial changes. Pearl River, 30(2): 39-42. ]
9 汪文富. 2001. 贵州普定后寨河流域土壤侵蚀模型与应用研究[J]. 贵州地质, 18(2): 99-106.
[Wang W F.2001. Investigation of land erosion model of Houzhaihe catchment in Puding, Guizhou and its application. Guizhou Geology, 18(2): 99-106. ]
10 韦明飞. 2005. 红水河输沙量变化分析[J]. 人民珠江, 26(3): 31-33.
[Wei M F.2005. Analysis of sediment discharge in Hongshuihe River. Pearl River, 26(3): 31-33. ]
11 吴昌广, 曾毅, 周志翔, . 2010. 三峡库区土壤可蚀性K值研究[J]. 中国水土保持科学, 8(3): 8-12.
[Wu C G, Zeng Y, Zhou Z G, et al.2010. Soil erodibility K value in Three Gorges reservoir area. Science of Soil and Water Conservation, 8(3): 8-12. ]
12 武旭同, 王腊春, 李娜. 2018. 近60 a来长江干流输沙量变化及其原因分析[J]. 长江流域资源与环境, 27(1): 116-124.
[Wu X T, Wang L C, Li N.2018. Analysis on the change of sediment discharge of the Yangtze River in recent 60 years. Resources and Environment in the Yangtze Basin, 27(1): 116-124. ]
13 徐琳, 王红亚, 蔡运龙. 2007. 黔中喀斯特丘原区小河水库沉积物的矿物磁性特征及其土壤侵蚀意义[J]. 第四纪研究, 27(3): 408-416.
[Xu L, Wang H Y, Cai Y L.2007. Mineral magnetic characteristics of sediments from Xiaohe reservoir in Karst hilly plain, central Guizhou Province and their implications on soil erosion. Quaternary Sciences, 27(3): 408-416. ]
14 徐夏楠, 高建华, 贾建军, . 2015. 气候变化和人类活动对鄱阳湖流域入湖输沙量影响的定量估算[J]. 地理研究, 34(5): 838-850.
[Xu X N, Gao J H, Ja J J, et al.2015. The quantitative estimation of sediment load changes entering Poyang Lake basin induced by climate change and anthropogenic impacts. Geographical Research, 34(5): 838-850. ]
15 许月卿, 彭建. 2008. 贵州猫跳河流域土地利用变化及其对土壤侵蚀的影响[J]. 资源科学, 30(8): 1218-1225.
[Xu Y Q, Peng J.2008. Effects of simulated land use change on soil erosion in the Maotiao River watershed of Guizhou Province. Resources science, 30(8): 1218-1225. ]
16 薛天翼, 王红亚. 2018. 湖泊(水库)沉积物分析在土壤侵蚀研究中的运用[J]. 地理科学进展, 37(7): 890-900.
[Xue T Y, Wang H Y.2018. Soil erosion investigation based on sediments in lakes and reservoirs. Progress in Geography, 37(7): 890-900. ]
17 应铭, 李九发, 万新宁, . 2005. 长江大通站输沙量时间序列分析研究[J]. 长江流域资源与环境, 14(1): 83-87.
[Ying M, Li J F, Wan X N, et al.2005. Study on time series of sediment discharge at Datong station in the Yangtze River. Resources and Environment in the Yangtze Basin, 14(1): 83-87. ]
18 袁路, 潘家华. 2013. Kaya恒等式的碳排放驱动因素分解及其政策含义的局限性[J]. 气候变化研究进展, 9(3): 210-215. [Yuan L, Pan J H.2013. Disaggregation of carbon emission drivers in Kaya Identity and its limitations with regard of policy implications. Climate Change Research, 9(3): 210-215. ]
19 张金池, 李海东, 林杰, . 2008. 基于小流域尺度的土壤可蚀性K值空间变异[J]. 生态学报, 28(5): 2199-2206.http://d.wanfangdata.com.cn/Periodical/stxb200805036 [Zhang J C, Li H D, Lin J, et al.2008. Spatial variability of soil erodibility (K-Factor) at a catchment scale in China. Acta Ecologica Sinica, 28(5): 2199-2206. ]
20 张科利, 彭文英, 杨红丽. 2007. 中国土壤可蚀性值及其估算[J]. 土壤学报, 44(1): 7-13.
[Zhang K L, Peng W Y, Yang H L.2007. Soil erodibility and its estimation for agricultural soil in China. Acta Pedologica Sinica, 44(1): 7-13. ]
21 张信宝, 文安邦, Walling D E, . 2011. 大型水库对长江上游主要干支流河流输沙量的影响[J]. 泥沙研究, (4): 59-66.
[Zhang X B, Wen A B, Walling D E, et al.2011. Effects of large-scale hydropower reservoirs on sediment loads in upper Yangtze River and its major tributaries. Journal of Sediment Research, (4): 59-66. ]
22 章文波, 付金生. 2003. 不同类型雨量资料估算降雨侵蚀力[J]. 资源科学, 25(1): 35-41.
[Zhang W B, Fu J S.2003. Rainfall erosivity estimation under different rainfall amount. Resources Science, 25(1): 35-41. ]
23 朱正治. 1995. 贵州省降水、径流、输沙的Cv与土壤侵蚀[J]. 中国水土保持, (11): 24-26.
[Zhu Z Z.1995. Relations between coefficients of variation of precipitation, runoff, sediment transportation and soil erosion in Guizhou Province. Soil and Water Conservation in China, (11): 24-26. ]
24 Boix-Fayos C, de Vente J, Martínez-Mena M.2008. The impact of land use change and check-dams on catchment sediment yield[J]. Hydrological Processes, 22(25): 4922-4935.http://doi.wiley.com/10.1002/hyp.v22%3A25
DOI: 10.1002/hyp.v22:25     
25 Castillo V M, Mosch W M, García C C, et al.2007. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain)[J]. Catena, 70(3): 416-427.https://linkinghub.elsevier.com/retrieve/pii/S0341816206002438
26 Chen C-T A, Borges A V.2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2[J]. Deep Sea Research Part II, 56(8-10): 578-590.https://linkinghub.elsevier.com/retrieve/pii/S0967064509000162
27 Desmet P J J, Govers G.1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units[J]. Journal of Soil and Water Conservation, 51(5): 427-433.
28 Fiener P, Auerswald K, Oost K V.2011. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments: A review[J]. Earth-Science Reviews, 106(1): 92-104.https://linkinghub.elsevier.com/retrieve/pii/S0012825211000110
29 Fu B J, Zhao W W, Chen L D, et al.2005. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China[J]. Land Degradation and Development, 16(1): 73-85.http://doi.wiley.com/10.1002/ldr.v16%3A1
DOI: 10.1002/ldr.v16:1     
30 Hooke J M, Mant J M.2000. Geomorphological impacts of a flood event on ephemeral channels in SE Spain[J]. Geomorphology, 34(3): 163-180.https://linkinghub.elsevier.com/retrieve/pii/S0169555X00000052
31 Martin J M, Meybeck M.1979. Elemental mass-balance of material carried by major world rivers[J]. Marine Chemistry, 7(3): 173-206.https://linkinghub.elsevier.com/retrieve/pii/0304420379900392
32 Nyssen J, Poesen J, Moeyersons J, et al.2010. Dynamics of soil erosion rates and controlling factors in the Northern Ethiopian Highlands: Towards a sediment budget[J]. Earth Surface Processes and Landforms, 33(5): 695-711.
33 Oost K V, Govers G, Desmet P.2000. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage[J]. Landscape Ecology, 15(6): 577-589.http://link.springer.com/10.1023/A:1008198215674
34 Parysow P, Wang G, Gertner G, et al.2003. Spatial uncertainty analysis for mapping soil erodibility based on joint sequential simulation[J]. Catena, 53(1): 65-78.https://linkinghub.elsevier.com/retrieve/pii/S0341816202001984
35 Poesen J, Nachtergaele J, Verstraeten G, et al.2003. Gully erosion and environmental change: Importance and research needs[J]. Catena, 50(2): 91-133.https://linkinghub.elsevier.com/retrieve/pii/S0341816202001431
36 Quiñonero-Rubio J M, Nadeu E, Boix-Fayos C, et al.2016. Evaluation of the effectiveness of forest restoration and check-dams to reduce catchment sediment yield[J]. Land Degradation and Development, 27(4): 1018-1031.http://doi.wiley.com/10.1002/ldr.v27.4
DOI: 10.1002/ldr.v27.4     
37 Ranzi R, Le T H, Rulli M C.2012. A RUSLE approach to model suspended sediment load in the Lo River (Vietnam): Effects of reservoirs and land use changes[J]. Journal of Hydrology, 422-423(5): 17-29.https://linkinghub.elsevier.com/retrieve/pii/S0022169411008821
38 Raupach M R, Marland G, Ciais P, et al.2007. Global and regional drivers of accelerating CO2 emissions[J]. PNAS, 104: 10288-10293.http://www.pnas.org/cgi/doi/10.1073/pnas.0700609104
39 Rompaey A J J V, Verstraeten G, Oost K V, et al.2001. Modelling mean annual sediment yield using a distributed approach[J]. Earth Surface Processes and Landforms, 26(11): 1221-1236.http://doi.wiley.com/10.1002/esp.v26%3A11
DOI: 10.1002/esp.v26:11     
40 Syvitski J P M, Vörösmarty C J, Kettner A J, et al.2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 308: 376-380.http://www.sciencemag.org/cgi/doi/10.1126/science.1109454
41 Vanacker V, Molina A, Govers G, et al.2005. River channel response to short-term human-induced change in landscape connectivity in Andean ecosystems[J]. Geomorphology, 72(1): 340-353.https://linkinghub.elsevier.com/retrieve/pii/S0169555X05001959
42 Walling D E, Fang D.2003. Recent trends in the suspended sediment loads of the world's rivers[J]. Global and Planetary Change, 39(1-2): 111-126.https://linkinghub.elsevier.com/retrieve/pii/S0921818103000201
43 Wang H J, Yang Z S, Saito Y, et al.2006. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams[J]. Global and Planetary Change, 50(3-4): 212-225.https://linkinghub.elsevier.com/retrieve/pii/S0921818106000178
44 Wang H J, Yang Z S, Saito Y, et al.2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): Impacts of climate change and human activities[J]. Global and Planetary Change, 57(3-4): 331-354.https://linkinghub.elsevier.com/retrieve/pii/S0921818107000082
45 Wang S, Fu B J, Piao S L, et al.2015. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 9: 38-41.
46 Wohl E.2006. Human impacts to mountain streams[J]. Geomorphology, 79(3): 217-248.https://linkinghub.elsevier.com/retrieve/pii/S0169555X06002522
47 Yang S L, Zhang J, Xu X J.2007. Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River[J]. Geophysical Research Letters, 34(10): L10401. doi: 10.1029/2007GL029472.http://doi.wiley.com/10.1029/2007GL029472
[1] 薛天翼,王红亚. 湖泊(水库)沉积物分析在土壤侵蚀研究中的运用[J]. 地理科学进展, 2018, 37(7): 890-900.
[2] 李春梅, 李双成, 王红亚. 贵州麦岗水库小流域降水变化特征的小波分析[J]. 地理科学进展, 2012, (1): 32-39.
[3] 宋杨, 程维明, 柏延臣, 万丛, 申元村, 蒋艳, 刘海江. 密云水库周边山区滑坡泥石流易发区预估[J]. 地理科学进展, 2011, 30(3): 343-351.
[4] 梁涛, 王浩, 丁士明, 薛金凤, 蔡春霞, 张秀梅. 官厅水库近三十年的水质演变时序特征[J]. 地理科学进展, 2003, 22(1): 38-44.
[5] 高迎春, 姚治君, 刘宝勤, 吕爱锋. 密云水库入库径流变化趋势及动因分析[J]. 地理科学进展, 2002, 21(6): 546-553.
[6] 梁涛, 张秀梅, 章申. 官厅水库及永定河枯水期水体氮、磷和重金属含量分布规律[J]. 地理科学进展, 2001, 20(4): 341-346.
[7] 朱美荣. 水库移民中安置性移民与开发性移民的比较研究[J]. 地理科学进展, 1999, 18(3): 201-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 地理科学进展
技术支持: 北京玛格泰克科技发展有限公司