Please wait a minute...
PROGRESS IN GEOGRAPHY
 
引用检索 快速检索 图表检索 高级检索
地理科学进展    2019, Vol. 38 Issue (5): 709-717     DOI: 10.18306/dlkxjz.2019.05.008
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
中国北方农牧交错带春季风速的年际变化与冬季海温的关系
胡毅鸿1,2,3(),龚道溢1,2,3,*(),毛睿1,2,3,石晓雪1,2,3
1. 北京师范大学环境演变与自然灾害教育部重点实验室, 北京 100875
2. 北京师范大学减灾与应急管理研究院,北京 100875
3. 北京师范大学地理科学学部,北京 100875
Relationships between interannual variations of spring winds in the agro-pastoral transitional zone of Northern China and winter sea surface temperature
HU Yihong1,2,3(),GONG Daoyi1,2,3,*(),MAO Rui1,2,3,SHI Xiaoxue1,2,3
1. Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China
2. Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China
3. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
全文: PDF (7699 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

利用中国北方农牧交错带1979—2016年64个气象台站的逐日风速资料、ERSST海温数据以及ERA-Interim再分析资料,探讨了前期冬季海温与北方农牧交错带春季风速年际变化的关系。研究表明,北方农牧交错带春季的风速存在强烈的逐年波动,年际方差占总方差的比例为36%。影响农牧交错带春季风速年际变化的前期冬季海温在北大西洋20°N~65°N区域呈现“负、正、负”的异常分布,在北太平洋10°N~55°N、130°W~180°区域呈现“负、正”的异常分布。冬季的海温异常与研究区春季风速年际变化联系的桥梁是北半球大尺度大气环流的异常。当北大西洋海温从高纬至低纬呈现“负、正、负”的异常分布时,从北大西洋至东亚位势高度呈明显的“正、负、正、负”的波列特征;当北太平洋海温从高纬至低纬呈现“负、正”的异常分布时,从北太平洋至东亚位势高度呈“负、正、负、正、负、正”的三波型分布。二者均能影响东亚地区春季大气环流的变化,导致东亚地区上空产生一个异常的气旋性环流,该气旋性环流在对流层中层与低层均存在,是造成研究区风速变化的直接原因。冬季海温与研究区春季风速的显著相关,说明冬季海温对农牧交错带春季风速的年际变化具有超前指示意义。利用北大西洋和北太平洋海温异常中心区的冬季海温作为预报因子,建立春季风速预报模型,可以解释风速年际变化的32%,回报交叉验证结果表明,海温与风速的时间滞后关系是显著和稳健的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡毅鸿
龚道溢
毛睿
石晓雪
关键词 风速海温年际变化北方农牧交错带 
Abstract

This study investigated possible relationships between winter sea surface temperature (SST) and the interannual variation of spring wind speed in the agro-pastoral transitional zone of Northern China by employing daily wind speed observations of 64 meteorological stations, the extended reconstructed sea surface temperature, version 5 (ERSST v5) dataset, and the ERA-Interim reanalysis data. The results show that spring wind exhibited strong year-to-year variations. During the period of 1979-2016, the interannual components accounted for 36% of the total variance. Winter SST, which affects the interannual variation of wind speed in the study area in spring, presented a negative-positive-negative distribution between 20°N-65°N in the North Atlantic, and a negative-positive distribution in the domain of 10°N-55°N and 130°W-180° in the North Pacific Ocean. Interannual variations of surface spring wind in the study area were significantly related to the North Atlantic SST index (r = 0.50) and the North Pacific SST index (r = 0.44). The large-scale atmospheric circulation in the northern hemisphere is the bridge that links winter SSTs and the spring wind. In association with the North Atlantic SST anomalies of negative-positive-negative distribution from high to low latitudes, a wave pattern of pressure height anomalies appeared over the North Atlantic and Eurasia. Accompanying a negative-positive distribution in North Pacific SST anomalies, the pressure height anomalies from the North Pacific to East Asia presented a three-wave pattern. Both of them can lead to an anomalous cyclonic circulation over East Asia in spring. The anomalous cyclonic circulation existed in both the middle and the lower troposphere, which was the factor directly resulting in higher wind speed over the study area. The significant correlation between winter SST and spring wind speed implies that winter SST can be used as a skillful predictor for spring wind in practice. A statistical forecast model with winter SSTs in the North Atlantic and North Pacific as predictors can explain 32% of the interannual variance of the spring wind speed. Cross-validation shows that the time lag relationship between SST and wind speed is significant and robust.

Key wordswind speed    sea surface temperature    interannual variation    agro-pastoral transitional zone in Northern China
收稿日期: 2019-03-04      出版日期: 2019-05-28
基金资助:国家自然科学基金项目(41621061);国家重点研发计划项目(2016YFA0602401)
通讯作者: 龚道溢     E-mail: hyh@mail.bnu.edu.cn;gdy@bnu.edu.cn
引用本文:   
胡毅鸿, 龚道溢, 毛睿等 . 中国北方农牧交错带春季风速的年际变化与冬季海温的关系[J]. 地理科学进展, 2019, 38(5): 709-717.
HU Yihong, GONG Daoyi, MAO Rui et al . Relationships between interannual variations of spring winds in the agro-pastoral transitional zone of Northern China and winter sea surface temperature[J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 709-717.
链接本文:  
http://www.progressingeography.com/CN/10.18306/dlkxjz.2019.05.008      或      http://www.progressingeography.com/CN/Y2019/V38/I5/709
1 史培军. 2009. 中国北方农牧交错带土地利用时空格局与优化模拟 [M]. 北京: 科学出版社.
[Shi P J.2009. Spatiotemporal pattern and optimization simulation of land use in the agro-pastoral transitional zone in northern China. Beijing, China: Science Press. ]
2 陶寅, 黄勇, 杨元建, . 2016. 城市化进程对安徽省风速的影响[J]. 气候变化研究进展, 12(6): 519-526. [Tao Y, Huang Y, Yang Y J, et al.2016. Impact of urbanization on wind speed in Anhui Province. Climate Change Research, 12(6): 519-526. ]
3 肖鲁湘, 张增祥. 2008. 农牧交错带边界判定方法的研究进展[J]. 地理科学进展, 27(2): 104-111. [Xiao L X, Zhang Z X.2008. Processes on the boundary definition of agro- pastoral zone in China. Progress in Geography, 27(2): 104-111. ]
4 武炳义, 张人禾. 2011. 东亚夏季风年际变率及其与中、高纬度大气环流以及外强迫异常的联系[J]. 气象学报, 69(2): 219-233. [Wu B Y, Zhang R H.2011. Interannual variability of the East Asian summer monsoon and its association with the anomalous atmospheric circulation over the mid-high latitudes and external forcing. Acta Meteorologica Sinica, 69(2): 219-233. ]
5 张人禾, 闵庆烨, 苏京志. 2017. 厄尔尼诺对东亚大气环流和中国降水年际变异的影响: 西北太平洋异常反气旋的作用[J]. 中国科学: 地球科学, 47(5): 544-553.
[Zhang R H, Min Q Y, Su J Z.2017. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacifc anticyclone. Science China: Earth Sciences, 47(5): 544-553. ]
6 赵哈林, 赵学勇, 张铜会, . 2002. 北方农牧交错带的地理界定及其生态问题[J]. 地球科学进展, 17(5): 739-747.http://d.wanfangdata.com.cn/Periodical/dqkxjz200205017 [Zhao H L, Zhao X Y, Zhang T H, et al.2002. Boundary line on agro-pasture zigzag zone in North China and its problems on eco-environment. Advance in Earth Sciences, 17(5): 739-747. ]
7 赵宗慈, 罗勇, 江滢, . 2016. 近50年中国风速减小的可能原因[J]. 气象科技进展, 6(3): 106-109.
[Zhao Z C, Luo Y, Jiang Y, et al.2016. Possible reasons of wind speed decline in China for the last 50 years. Advance in Meteorological Science and Technology, 6(3): 106-109. ]
8 Arlot S, Celisse A.2010. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 4: 40-79.http://projecteuclid.org/euclid.ssu/1268143839
DOI: 10.1214/09-SS054     
9 Chang C P, Zhang Y, Li T.2000. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon[J]. Journal of Climate, 13(24): 4326-4340.http://journals.ametsoc.org/doi/abs/10.1175/1520-0442%282000%29013%3C4326%3AIAIVOT%3E2.0.CO%3B2
10 Chou C, Tu J Y, Yu J Y.2003. Interannual variability of the Western North Pacific summer monsoon: Differences between ENSO and non-ENSO years[J]. Journal of Climate, 16(13): 2275-2287.http://journals.ametsoc.org/doi/abs/10.1175/2761.1
DOI: 10.1175/2761.1     
11 Dee D P, Uppala S M, Simmons A J, et al.2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Geophysical Research Letters, 137: 553-597.
12 Guo H, Xu M, Hu Q.2011. Changes in near-surface wind speed in China: 1969-2005[J]. International Journal of Climatology, 31(3): 349-358.http://doi.wiley.com/10.1002/joc.v31.3
DOI: 10.1002/joc.v31.3     
13 Huang B, Thorne P W, Banzon V F, et al.2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons[J]. Journal of Climate, 30(20): 8179-8205.http://journals.ametsoc.org/doi/10.1175/JCLI-D-16-0836.1
14 Hu K, Huang G, Huang R.2011. The impact of tropical Indian Ocean variability on summer surface air temperature in China[J]. Journal of Climate, 24(24): 5365-5377.http://journals.ametsoc.org/doi/abs/10.1175/2011JCLI4152.1
15 Jacobson M Z, Kaufman Y J.2006. Wind reduction by aerosol particles[J]. Geophysical Research Letters, 33(24): 194-199.
16 Jiang Y, Luo Y, Zhao Z C, et al, 2010. Changes in wind speed over China during 1956-2004[J]. Theoretical and Applied Climatology, 99(3-4): 421-430.http://link.springer.com/10.1007/s00704-009-0152-7
17 Kim H J, Ahn J B.2012. Possible impact of the autumnal North Pacific SST and November AO on the East Asian winter temperature[J]. Journal of Geophysical Research Atmospheres, 117, D12104, doi: 10.1029/2012JD017527.
18 Lin C, Yang K, Qin J, et al.2013. Observed coherent trends of surface and upper-air wind speed over China since 1960[J]. Journal of Climate, 26(9): 2891-2903.http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00093.1
19 Li S, Lu j, Huang G, et al.2008. Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study[J]. Journal of Climate, 21(22): 6080-6088.http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI2433.1
20 Wang B, Wu R, Fu X.2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?[J]. Journal of Climate, 13(9):1517-1536.http://journals.ametsoc.org/doi/abs/10.1175/1520-0442%282000%29013%3C1517%3APEATHD%3E2.0.CO%3B2
21 Wilks D S.2011. Statistical methods in the atmospheric sciences [M]. London, UK: Academic Press.
22 Wu J, Zha J, Zhao D.2017. Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method[J]. Climate Dynamics, 48(1-2): 131-149.http://link.springer.com/10.1007/s00382-016-3065-z
23 Wu J, Zha J, Zhao D, et al.2018. Changes in terrestrial near-surface wind speed and their possible causes: An overview[J]. Climate Dynamics, 51(5-6): 2039-2078.
24 Wu Z, Wang B, Li J, et al.2009. An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO[J]. Journal of Geophysical Research Atmospheres, 114, D18120, doi: 10.1029/2009JD011733.http://doi.wiley.com/10.1029/2009JD011733
25 Xie S, Hu K, Hafner J, et al.2009. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Nino[J]. Journal of Climate, 22(3): 730-747.http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI2544.1
26 Xu M, Chang C P, Fu C, et al.2006. Steady decline of East Asian monsoon winds, 1969-2000: Evidence from direct ground measurements of wind speed[J]. Journal of Geophysical Research: Atmospheres, D24111, doi: 10.1029/2006JD007337.
27 Yang J, Liu Q, Liu Z.2010. Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode[J]. Journal of Climate, 23(21): 5889-5902.http://journals.ametsoc.org/doi/abs/10.1175/2010JCLI2962.1
28 Zhao P, Cao Z, Chen J.2010. A summer teleconnection pattern over the extratropical Northern Hemisphere and associated mechanisms[J]. Climate Dynamics, 35(2-3): 523-534.http://link.springer.com/10.1007/s00382-009-0699-0
29 Zhao P, Zhang X, Zhou X, et al.2004. The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall[J]. Journal of Climate, 17(17): 3434-3447.http://journals.ametsoc.org/doi/abs/10.1175/1520-0442%282004%29017%3C3434%3ATSIEAI%3E2.0.CO%3B2
30 Zuo J, Li W, Sun C, et al.2013. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon[J]. Advances in Atmospheric Sciences, 30(4): 1173-1186.http://link.springer.com/10.1007/s00376-012-2125-5
[1] 张芳芳,郑永宏,潘国艳,袁帅,孔繁希,起永东,王丹. 神农架地区树轮δ18O序列的气候指示意义[J]. 地理科学进展, 2018, 37(7): 946-953.
[2] 方伟华, 林伟. 面向灾害风险评估的台风风场模型研究综述[J]. 地理科学进展, 2013, 32(6): 852-867.
[3] 徐霞,刘海鹏,高琼. 中国北方农牧交错带土地利用空间优化布局的动态模拟[J]. 地理科学进展, 2008, 27(3): 80-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 地理科学进展
技术支持: 北京玛格泰克科技发展有限公司