Please wait a minute...
PROGRESS IN GEOGRAPHY
 
引用检索 快速检索 图表检索 高级检索
地理科学进展    2019, Vol. 38 Issue (5): 698-708     DOI: 10.18306/dlkxjz.2019.05.007
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于Google Earth和MODIS陆地数据的农林地转换对地表温度的影响——以长江中下游及毗邻地区为例
赵彩杉1(),曾刚2,张丽娟1,张学珍3,*()
1. 哈尔滨师范大学寒区地理环境监测与空间信息服务黑龙江省重点实验室,哈尔滨 150025
2. 南京信息工程大学气象灾害教育部重点实验室,南京 210044
3. 中国科学院地理科学与资源研究所 中国科学院陆地表层格局与模拟重点实验室,北京100101
Effects of cropland and woodland conversion on land surface temperature based on Google Earth and MODIS land data: A case study of the middle and lower reaches of the Yangtze River Basin and its adjacent areas
ZHAO Caishan1(),ZENG Gang2,ZHANG Lijuan1,ZHANG Xuezhen3,*()
1. Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
2. Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China;
3. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
全文: PDF (7758 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

揭示耕地与林地转换对地表温度的影响对于认识人类活动的气候与环境效应具有重要意义。基于卫星遥感数据的统计分析是揭示土地利用/覆盖变化对地表温度影响的重要手段。但是,在景观破碎度较高地区,混合像元问题成为使用这一技术手段的主要限制性因素,中国南方长江流域尤为典型。为突破这一限制,论文基于Google Earth高清影像,在1 km尺度上辨识了200对耕地与林地纯像元,进而利用MODIS陆地数据产品,对比分析了耕地与林地的地表温度(LST)、叶面积指数(LAI)、地表反照率(Albedo)之差。结果表明:耕地的LST高于林地,白天和夜间温度分别约偏高2.75 ℃和1.15 ℃,并且温差因季节而异,白昼温差呈双峰(分别是5月和10月,温差约3.18 ℃和3.33 ℃),夜间温差为单峰(7月,约2.46 ℃)。同时,温差因地而异,总体表现为西高东低,陕甘交界处的白昼温差最大,年平均约为3.83 ℃;安徽中南部温差最小,约为1.1 ℃。耕地与林地的LST之差主要由蒸散发的差异所致。林地的LAI较大,蒸散发较强,地表向大气的潜热通量较大,用于直接加热地表的感热相对偏少,因而LST相对偏低。上述结果表明近年来长江流域及毗邻地区的耕地转为林地通过增加蒸发产生了一定的致冷效应。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵彩杉
曾刚
张丽娟
张学珍
关键词 耕地与林地转换地表温度长江中下游地区 
Abstract

Revealing the impact of land conversion on land surface temperature is of great significance for understanding the climatic and environmental effects of human activities. Statistical analysis based on satellite remote sensing data is an important method to reveal the impact of land use/cover change on land surface temperature. However, in areas with high landscape fragmentation, the mixed pixel problem has become the main limiting factor for the use of this technology, especially in the Yangtze River Basin in southern China. In order to break through this limitation, 200 pairs of pure pixels of cropland and woodland were identified on the 1 km scale based on Google Earth high-definition images. Then, the differences of land surface temperature (LST), leaf area index (LAI), and albedo between cropland and woodland were compared and analyzed by MODIS land data products. The results show that the LST of cropland was higher than that of woodland, and the temperature differences between daytime and nighttime were about 2.75 ℃ and 1.15 ℃, respectively. Daytime temperature difference between cropland and woodland showed double peaks (May and October, with temperature differences about 3.18 ℃ and 3.33 ℃), and nighttime temperature difference showed a single peak (July, about 2.46 ℃). Temperature difference varied from place to place. The highest temperature difference was in the west—in the area bordering Shaanxi and Gansu Provinces, annual average temperature difference was about 3.83 ℃; and temperature difference was the smallest between central and southern Anhui Province (about 1.1 ℃). The difference of LST between cropland and woodland is mainly caused by the difference of evapotranspiration. The LAI of woodland is larger, the evapotranspiration is stronger, the latent heat flux from the surface to the atmosphere is higher, and the sensible heat used to directly heat the surface is relatively less, so the LST is relatively low. The above results show that the conversion of cropland to woodland in the Yangtze River Basin and adjacent areas has a cooling effect by increasing evaporation in recent years.

Key wordscropland and woodland conversion    land surface temperature    middle and lower reaches of the Yangtze River Basin
收稿日期: 2018-12-27      出版日期: 2019-05-28
基金资助:中国科学院前沿科学重点研究项目 (QYZDB-SSW-DQC005);国家自然科学基金项目(41790424);气象灾害教育部重点实验室开放课题(KLME1506);中国科学院青年创新促进会资助项目(2015038)
通讯作者: 张学珍     E-mail: zcs0719@163.com;xzzhang@igsnrr.ac.cn
引用本文:   
赵彩杉, 曾刚, 张丽娟等 . 基于Google Earth和MODIS陆地数据的农林地转换对地表温度的影响——以长江中下游及毗邻地区为例[J]. 地理科学进展, 2019, 38(5): 698-708.
ZHAO Caishan, ZENG Gang, ZHANG Lijuan et al . Effects of cropland and woodland conversion on land surface temperature based on Google Earth and MODIS land data: A case study of the middle and lower reaches of the Yangtze River Basin and its adjacent areas[J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 698-708.
链接本文:  
http://www.progressingeography.com/CN/10.18306/dlkxjz.2019.05.007      或      http://www.progressingeography.com/CN/Y2019/V38/I5/698
1 董思言, 延晓冬, 熊喆, . 2015. 土地利用/覆盖变化对中国不同季节气温的影响[J]. 生态学报, 35(14): 4871-4879. [Dong S Y, Yan X D, Xiong Z, et al.2015. Impacts of land use/cover change in China on mean temperature. Acta Ecologica Sinica, 35(14): 4871-4879. ]
2 胡茂桂, 王劲峰. 2010. 遥感影像混合像元分解及超分辨率重建研究进展[J]. 地理科学进展, 29(6): 747-756. [Hu M G, Wang J F.2010. Mixed-pixel decomposition and super-resolution reconstruction of RS image. Progress in Geography, 29(6): 747-756. ]
3 胡琼, 张建, 徐保东, . 2013. Google Earth影像与同源Quick Bird影像在城市土地利用分类上的对比研究[J]. 华中师范大学学报(自然科学版), 47(2): 287-291.
[Hu Q, Zhang J, Xu B D, et al.2013. A comparison of Google Earth imagery and the homologous Quick Bird imagery being used in land-use classification. Journal of Central China Normal University (Natural Sciences), 47(2): 287-291. ]
4 蓝金辉, 邹金霖, 郝彦爽, . 2018. 高光谱遥感影像混合像元分解研究进展[J]. 遥感学报, 22(1): 13-27.
[Lan J H, Zou J L, Hao Y S, et al.2018. Research progress on unmixing of hyperspectral remote sensing imagery. Journal of Remote Sensing, 22(1): 13-27. ]
5 李升发, 李秀彬. 2016. 耕地撂荒研究进展与展望[J]. 地理学报, 71(3): 370-389.
[Li S F, Li X B.2016. Progress and prospect on farmland abandonment. Acta Geographica Sinica, 71(3): 370-389. ]
6 李勇, 杨晓光, 代姝玮, . 2010. 长江中下游地区农业气候资源时空变化特征[J]. 应用生态学报, 21(11): 2912-2921.http://d.wanfangdata.com.cn/Periodical/yystxb201011027
[Li Y, Yang X G, Dai S W, et al.2010. Spatiotemporal change characteristics of agricultural climate resources in middle and lower reaches of Yangtze River. Chinese Journal of Applied Ecology, 21(11): 2912-1921. ]
7 杨永可, 肖鹏峰, 冯学智, . 2014. 大尺度土地覆盖数据集在中国及周边区域的精度评价[J]. 遥感学报, 18(2): 453-475. [Yang Y K, Xiao P F, Feng X Z, et al.2014. Comparison and assessment of large-scale land cover datasets in China and adjacent regions. Journal of Remote Sensing, 18(2): 453-475. ]
8 袁智. 2013. 植物叶片蒸腾作用模拟 [D]. 合肥: 中国科学技术大学.
[Yuan Z.2013. The simulation of the traspiration of the plant leaf. Hefei, China: University of Science and Technology of China. ]
9 张方方, 齐述华, 舒晓波, . 2010. 南方山地丘陵土地利用类型的地形影响GIS分析: 以江西省为例[J]. 地球信息科学学报, 12(6): 784-790.
[Zhang F F, Qi S H, Shu X B, et al.2010. Study on the relationship between land use spatial patterns and topographical factors for mountainous region: Taking Jiangxi Province as an exampler. Journal of Geo-information Science, 12(6): 784-790. ]
10 张学珍, 刘纪远, 熊喆, . 2015. 20世纪末中国中东部耕地扩张对表面气温影响的模拟[J]. 地理学报, 70(9): 1423-1433.
[Zhang X X, Liu J Y, Xiong Z, et al.2015. Simulated effects of agricultural development on surface air temperature over central and eastern China in the late 20th century. Acta Geographica Sinica, 70(9): 1423-1433. ]
11 张学珍, 赵彩杉, 董金玮, . 2019. 1992—2017 年基于荟萃分析的中国耕地撂荒时空特征[J]. 地理学报, 74(3): 411-420.
[Zhang X Z, Zhao C S, Ding J W, et al.2019. Spatiotemporal pattern of cropland abandonment in China in the last three decades: A meta-analysis. Acta Geographica Sinica, 74(3): 411-420. ]
12 Arendt A, Luthcke S, Gardner A, et al.2013. Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers[J]. Journal of Glaciology, 59: 913-924.https://www.cambridge.org/core/product/identifier/S0022143000202906/type/journal_article
13 Dong J W, Liu J Y, Yan H M, et al.2011. Spatio-temporal pattern and rationality of land reclamation and cropland abandonment in mid-eastern Inner Mongolia of China in 1990-2005[J]. Environmental Monitoring and Assessment, 179: 137-153.http://link.springer.com/10.1007/s10661-010-1724-9
14 Essa W, Verbeiren B, Kwast J V D, et al.2017. Improved distrad for downscaling thermal MODIS imagery over urban areas[J]. Remote Sensing, 9(12), doi: 10.3390/rs9121243.
15 Foley J A, Ruth D, Gregory P A, et al.2005. Global consequences of land use[J]. Science, 309: 570-574. doi:10.1126/science.1111772.http://www.sciencemag.org/cgi/doi/10.1126/science.1111772
16 Golestaneh P, Zekri M, Sheikholeslam F.2018. Fuzzy wavelet extreme learning machine[J]. Fuzzy Sets & Systems, 342: 90-108. doi: 10.1016/j.fss.2017.12.006.
17 Jin D C, Guan Z Y.2017. Summer rainfall seesaw between Hetao and the middle and lower reaches of the Yangtze River and its relationship with the North Atlantic Oscillation[J]. Journal of Climate, 30(17): 6629-6643.http://journals.ametsoc.org/doi/10.1175/JCLI-D-16-0760.1
18 Karlsson I B, Sonnenborg T O, Refsgaard J C, et al.2016. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change[J]. Journal of Hydrology, 535: 301-317.https://linkinghub.elsevier.com/retrieve/pii/S0022169416300099
19 Knyazikhin Y, Martonchik J V, Myneni R B, et al.1998. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data[J]. Journal of Geophysical Research Atmospheres, 103(D24): 32257-32275.http://doi.wiley.com/10.1029/98JD02462
DOI: 10.1029/98JD02462     
20 Lee X H, Goulden M L, Hollinger D Y, et al.2011. Observed increase in local cooling effect of deforestation at higher latitudes[J]. Nature, 479: 384-387.
DOI: 10.1038/nature10588     
21 Li J Y, Dodson J, Yan H, et al.2018. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China[J]. Climate Dynamics, 50(3-4): 1101-1113.http://link.springer.com/10.1007/s00382-017-3664-3
22 Li S F, He F N, Zhang X Z.2016. A spatially explicit reconstruction of cropland cover in China from 1661 to 1996[J]. Regional Environmental Change, 16(2): 417-428.http://link.springer.com/10.1007/s10113-014-0751-4
23 Li X X, Zhang X Z, Zhang L J.2017. Observed effects of vegetation growth on temperature in the early summer over the Northeast China Plain[J]. Atmosphere, 8(6). doi: 10.3390/atmos8060097.
24 Ludwig A, Meyer H, Nauss T.2016. Automatic classification of Google Earth images for a larger scale monitoring of bush encroachment in South Africa[J]. International Journal of Applied Earth Observations & Geoinformation, 50: 89-94.
25 Mahmood R, Pielke R A, Hubbard K G, et al.2014. Land cover changes and their biogeophysical effects on climate[J]. International Journal of Climatology, 34(4): 929-953.http://doi.wiley.com/10.1002/joc.2014.34.issue-4
26 Newbold T, Hudson L N, Hill S L L, et al.2015. Global effects of land use on local terrestrial biodiversity[J]. Nature, 520: 45-50.
DOI: 10.1038/nature14324     
27 Pei F S, Wu C J, Qu A, et al.2017. Changes in extreme precipitation: A case study in the middle and lower reaches of the Yangtze River in China[J]. Water, 9(12). doi: 10.3390/w9120943.
28 Peng S S, Piao S L, Zeng Z Z, et al.2014. Afforestation in China cools local land surface temperature[J]. PNAS, 111(8): 2915-2919.http://www.pnas.org/cgi/doi/10.1073/pnas.1315126111
29 Ramankutty N, Foley J A.1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992[J]. Global Biogeochemical Cycles, 13: 997-1028.http://doi.wiley.com/10.1029/1999GB900046
30 Schaaf C B, Gao F, Strahler A H, et al.2002. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 83(1): 135-148.https://linkinghub.elsevier.com/retrieve/pii/S0034425702000913
31 Turner II B L, Lambin E F, Reenberg A.2007. The emergence of land change science for global environmental change and sustainability[J]. PNAS, 104(52): 20666-20671.http://www.pnas.org/cgi/doi/10.1073/pnas.0704119104
32 Wan Z M, Li Z L.1997. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 980-996.http://ieeexplore.ieee.org/document/602541/
DOI: 10.1109/36.602541     
33 Wang Y Y, Li G.2014. Analysis of “furnace cities" in China using MODIS/LST product (MOD11A2)[C]// Geoscience and Remote Sensing Symposium. IEEE, 2014: 1817-1820.
34 Yan J Z, Yang Z Y, Li Z H, et al.2016. Drivers of cropland abandonment in mountainous areas: A household decision model on farming scale in Southwest China[J]. Land Use Policy, 57: 459-469. doi:10.1016/j.landusepol.2016.06.014.https://linkinghub.elsevier.com/retrieve/pii/S0264837716305968
35 Yebra M, Dijk A V, Leuning R, et al.2013. Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance[J]. Remote Sensing of Environment, 129(2): 250-261.https://linkinghub.elsevier.com/retrieve/pii/S0034425712004270
36 Zhang X Z, Tang Q H, Zheng, J Y, et al.2013. Warming/cooling effects of cropland greenness changes during 1982-2006 in the North China Plain[J]. Environmental Research Letters, 8(2). doi: 10.1088/1748-9326/8/2/024038.
[1] 江颖慧,焦利民,张博恩. 城市地表温度与NDVI空间相关性的尺度效应[J]. 地理科学进展, 2018, 37(10): 1362-1370.
[2] 李斌,王慧敏,秦明周,张鹏岩. NDVI、NDMI与地表温度关系的对比研究[J]. 地理科学进展, 2017, 36(5): 585-596.
[3] 李元征,尹科,周宏轩,王晓琳,胡聃. 基于遥感监测的城市热岛研究进展[J]. 地理科学进展, 2016, 35(9): 1062-1074.
[4] 闫军辉, 刘浩龙, 郑景云, 郝志新, 葛全胜, 傅辉. 长江中下游地区1620年的极端冷冬研究[J]. 地理科学进展, 2014, 33(6): 835-840.
[5] 周婷婷, 陈文惠. 基于MODIS数据和气象观测数据的 气温空间插值方法比较[J]. 地理科学进展, 2011, 30(9): 1143-1151.
[6] 柯灵红, 王正兴, 宋春桥, 卢振权. 青藏高原东北部MODIS LST时间序列重建及与台站地温比较[J]. 地理科学进展, 2011, 30(7): 819-826.
[7] 谢苗苗, 王仰麟, 付梅臣. 城市地表温度热岛影响因素研究进展[J]. 地理科学进展, 2011, 30(1): 35-41.
[8] 张霄羽,毕于运,李召良. 遥感估算热惯量研究的回顾与展望[J]. 地理科学进展, 2008, 27(3): 166-172.
[9] 贾媛媛,李召良. 被动微波遥感数据反演地表温度研究进展[J]. 地理科学进展, 2006, 25(3): 96-105.
[10] 李玉环,王静,曹银贵. 土壤墒情遥感反演与旱情诊断[J]. 地理科学进展, 2006, 25(2): 123-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 地理科学进展
技术支持: 北京玛格泰克科技发展有限公司