Please wait a minute...
PROGRESS IN GEOGRAPHY
 
引用检索 快速检索 图表检索 高级检索
地理科学进展    2019, Vol. 38 Issue (5): 625-636     DOI: 10.18306/dlkxjz.2019.05.001
  研究综述 本期目录 | 过刊浏览 | 高级检索 |
全球气候变化背景下海岸洪水灾害风险评估研究进展与展望
方佳毅1,2,3(),史培军2,3,4,5,*()
1. 华东师范大学地理科学学院,地理信息科学教育部重点实验室,上海 200241
2. 北京师范大学地理科学学部,北京 100875
3. 应急管理部-教育部减灾与应急管理研究院,北京 100875
4. 北京师范大学地表过程与资源生态国家重点实验室,北京 100875
5. 青海师范大学地理科学学院,西宁 810016
A review of coastal flood risk research under global climate change
FANG Jiayi1,2,3(),SHI Peijun2,3,4,5,*()
1. Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
2. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
3. Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management & Ministry of Education, Beijing 100875, China;
4. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
5. School of Geographical Science, Qinghai Normal University, Xining 810016, China
全文: PDF (1586 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

全球气候变化背景下,海平面上升以及高潮位和风暴潮引起的极值水位导致的海岸洪水对沿海社会经济和自然环境造成巨大影响,已是国内外关注的重点。论文梳理了广义和狭义海岸洪水的定义和要素,重点阐述了狭义海岸洪水的组成部分,从致灾因子、孕灾环境和承灾体以及风险评估方法与模型3个方面,系统总结了相关研究方法与研究成果的主要进展,以及存在的主要问题,并透视了未来拟加强的研究方向。建议加强沿海地区应对全球气候变化风险的研究,包括全球气候变化下多致灾因子耦合危险性和不确定性研究,沿海关键地区和关键暴露(关键基础设施)的风险评估研究,全球气候变化风险适应与减缓性措施的成本效益评价研究,提高沿海地区应对全球气候变化风险的韧性研究,以及建立多学科间的基础数据共享机制,采用交叉学科手段以便更综合、系统、动态研究海岸带问题,保障沿海地区开展全球气候变化下风险评估的需要。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方佳毅
史培军
关键词 海岸洪水全球气候变化风暴潮灾害风险评估影响 
Abstract

The sea level rise under global climate change and coastal floods caused by extreme sea levels due to the high tide levels and storm surges have huge impacts on coastal society, economy, and natural environment. It has drawn great attention from global scientific researchers. This study examines the definitions and elements of coastal flooding in the general and narrow senses, and mainly focuses on the components of coastal flooding in the narrow sense. Based on the natural disaster system theory, the review systematically summarizes the progress of coastal flood research in China, then discusses existing problems in present studies and future research directions with regard to this issue. It is proposed that future studies need to strengthen research on adapting to climate change in coastal areas, including studies on the risk of multi-hazards and uncertainties of hazard impacts under climate change, risk assessment of key exposure (critical infrastructure) in coastal hotspots, and cost-benefit analysis of adaptation and mitigation measures in coastal areas. Efforts to improve the resilience of coastal areas under climate change should be given more attention. The research community also should establish the mechanism of data sharing among disciplines to meet the needs of future risk assessments, so that coastal issues can be more comprehensively, systematically, and dynamically studied.

Key wordscoastal flood    global climate change    storm surge    risk assessment    impact
收稿日期: 2018-08-03      出版日期: 2019-05-28
基金资助:国家重点研发计划项目(2016YFA0602404,2017YFE0100700);上海市科研计划项目(19YF1413700);博士后科学基金面上项目(2019M651429)
通讯作者: 史培军     E-mail: jyfang@geo.ecnu.edu.cn;spj@bnu.edu.cn
引用本文:   
方佳毅, 史培军 . 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望[J]. 地理科学进展, 2019, 38(5): 625-636.
FANG Jiayi, SHI Peijun . A review of coastal flood risk research under global climate change[J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636.
链接本文:  
http://www.progressingeography.com/CN/10.18306/dlkxjz.2019.05.001      或      http://www.progressingeography.com/CN/Y2019/V38/I5/625
1 陈美香, 白如冰, 左军成, . 2013. 我国沿海海平面变化预测方法探究[J]. 海洋环境科学, 32(3): 451-455.http://www.cqvip.com/QK/95945X/201303/47832016.html
[Chen M X, Bai R B, Zuo J C, et al.2013. Discussion of sea level prediction along the coastal of China. Marine Environmental Science, 32(3): 451-455. ]
2 储金龙, 高抒, 徐建刚. 2005. 海岸带脆弱性评估方法研究进展[J]. 海洋通报, 24(3): 80-87.
[Chu J L, Gao S, Xu J G.2005. Risk and safety evaluation methodologies for coastal systems: A review. Marine Science Bulletin, 24(3): 80-87. ]
3 段晓峰, 许学工, 陈满春, . 2014. 基于长期验潮数据的海平面预测方法与案例应用[J]. 北京大学学报(自然科学版), 50(6):1065-1070.http://d.wanfangdata.com.cn/Periodical/bjdxxb201406010 [Duan X F, Xu X G, Chen M C, et al.2014. Methodology and case study of sea level prediction based on secular tide gauge data. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(6): 1065-1070. ]
4 方佳毅, 陈文方, 孔锋, . 2015. 中国沿海地区社会脆弱性评价[J]. 北京师范大学学报(自然科学版), 51(3): 280-286.http://d.wanfangdata.com.cn/Periodical/bjsfdxxb201503011 [Fang J Y, Chen W F, Kong F, et al.2015. Measuring social vulnerability to natural hazards of the coastal areas in China. Journal of Beijing Normal University (Natural Science), 51(3): 280-286. ]
5 冯爱青, 高江波, 吴绍洪, . 2016. 气候变化背景下中国风暴潮灾害风险及适应对策研究进展[J]. 地理科学进展, 35(11): 1411-1419.http://www.cqvip.com/QK/96015A/201611/670709676.html [Feng A Q, Gao J B, Wu S H, et al.2016. A review of storm surge disaster risk research and adaptation in China under climate change. Progress in Geography, 35(11): 1411-1419. ]
6 冯士筰. 1982. 风暴潮导论 [M]. 北京: 科学出版社.
[Feng S Z.1982. Introduction to storm surge. Beijing, China: Science Press. ]
7 姜彤, 赵晶, 曹丽格, . 2018. 共享社会经济路径下中国及分省经济变化预测[J]. 气候变化研究进展, 14(1): 50-58.
[Jiang T, Zhao J, Cao L G, et al.2018. Projection of national and provincial economy under the shared socioeconomic pathways in China. Climate Change Research, 14(1): 50-58. ]
8 姜彤, 赵晶, 景丞, . 2017. IPCC共享社会经济路径下中国和分省人口变化预估[J]. 气候变化研究进展, 13(2): 128-137.http://d.wanfangdata.com.cn/Periodical/qhbhyjjz201702004 [Jiang T, Zhao J, Jing C, et al.2017. National and provincial population projected to 2100 under the shared socioeconomic pathways in China. Climate Change Research, 13(2): 128-137. ]
9 李恒鹏, 杨桂山. 2002. 全球环境变化海岸易损性研究综述[J]. 地球科学进展, 17(1): 104-109.http://d.wanfangdata.com.cn/Periodical/dqkxjz200201016 [Li H P, Yang G S.2002. The advance in studies on coastal vulnerability to global change. Advance in Earth Sciences, 17(1): 104-109. ]
10 李阔, 李国胜. 2017. 气候变化影响下2050年广东沿海地区风暴潮风险评估[J]. 科技导报, 35(5): 89-95.http://www.cnki.com.cn/Article/CJFDTotal-KJDB201705022.htm
[Li K, Li G S, 2017. Risk assessment of storm surges in the coastal area of Guangdong Province in year 2050 under climate change. Science & Technology Review, 35(5): 89-95. ]
11 李响, 段晓峰, 张增健, . 2016. 中国沿海地区海平面上升脆弱性区划[J]. 灾害学, 31(4): 103-109.年度引用 [Li X, Duan X F, Zhang Z J, et al.2016. The vulnerability zoning research on the sea-level rise of Chinese Coastal. Journal of Catastrophology, 31(4): 103-109. ]
12 施雅风, 杨桂山. 1994. 中国海平面上升及其影响评估: 海平面上升对中国三角洲地区的影响及对策 [M]. 北京: 科学出版社.
[Shi Y F, Yang G.1994. Sea level rise and its impacts in China: Impacts and countermeasures of sea level rise on China's delta region. Beijing, China: Science Press. ]
13 施雅风, 朱季文, 谢志仁, . 2000. 长江三角洲及毗连地区海平面上升影响预测与防治对策[J]. 中国科学: 地球科学, 30(3): 225-232.年度引用 [Shi Y F, Zhu J W, Xie Z R, et al.2000. Prediction and countermeasures of sea level rise in the Yangtze River Delta and adjacent areas. Science in China: Earth Sciences, 30(3): 225-232. ]
14 石先武, 国志兴, 张尧, . 2016. 风暴潮灾害脆弱性研究综述[J]. 地理科学进展, 35(7): 889-897.http://d.wanfangdata.com.cn/Periodical/dlkxjz201607010 [Shi X W, Guo Z X, Zhang Y, et al.2016. A review of research on vulnerability to storm surges. Progress in Geography, 35(7): 889-897. ]
15 石先武, 谭骏, 国志兴, . 2013. 风暴潮灾害风险评估研究综述[J]. 地球科学进展, 28(8): 866-874.http://d.wanfangdata.com.cn/Periodical/dqkxjz201308003 [Shi X W, Tan J, Guo Z X, et al.2013. A review of risk assessment of storm surge disaster. Advances in Earth Science, 28(8): 866-874. ]
16 孙蕾, 石纯. 2007. 沿海城市自然灾害脆弱性评估研究进展[J]. 灾害学, 22(1): 102-105.http://d.wanfangdata.com.cn/Periodical/zhx200701023 [Sun L, Shi C.2007. Progress in vulnerability assessment of natural disasters in coastal cities. Journal of Catastrophology, 22(1): 102-105. ]
17 谭丽荣. 2012. 中国沿海地区风暴潮灾害综合脆弱性评估 [D]. 上海: 华东师范大学.
[Tan L R.2012. Assessment on comprehensive vulnerability of storm surge disasters of China's coastal regions. Shanghai, China: East China Normal University. ]
18 王宁, 张利权, 袁琳, . 2012. 气候变化影响下海岸带脆弱性评估研究进展[J]. 生态学报, 32(7): 2248-2258.http://www.cnki.com.cn/Article/CJFDTotal-STXB201207033.htm [Wang N, Zhang L Q, Yuan L, et al.2012. Research into vulnerability assessment for coastal zones in the context of climate change. Acta Ecologica Sinica, 32(7): 2248-2258. ]
19 王腾, 邹欣庆, 李保杰. 2015. 多驱动因素下海岸带脆弱性研究进展[J]. 海洋通报, 34(4): 361-369.http://www.cnki.com.cn/Article/CJFDTotal-HUTB201504001.htm [Wang T, Zou X Q, Li B J.2015. Research progress of coastal vulnerability to varied driving factors. Marine Science Bulletin, 34(4): 361-369. ]
20 温家洪, 袁穗萍, 李大力, . 2018. 海平面上升及其风险管理[J]. 地球科学进展, 33(4): 350-360.http://www.cqvip.com/QK/94287X/201804/675443403.html [Wen J H, Yuan S P, Li D L, et al.2018. Sea level rise and its risk management. Advances in Earth Science, 33(4): 350-360. ]
21 尹占娥, 许世远. 2012. 城市自然灾害风险评估研究 [M]. 北京: 科学出版社.
[Yin Z E, Xu S Y.2012. Study on risk assessment of urban natural hazards. Beijing, China: Science Press. ]
22 郑铣鑫, 武强, 应玉飞, . 2001. 中国沿海地区相对海平面上升的影响及地面沉降防治策略[J]. 科技通报, 17(6): 51-55.http://d.wanfangdata.com.cn/Periodical/kjtb200106010 [Zheng X X, Wu Q, Ying Y F, et al.2001. Impacts of relative sea-level rising and strategies of control of land subsidence in coastal region of China. Bulletin of Science and Technology, 17(6): 51-55. ]
23 周瑶, 王静爱. 2012. 自然灾害脆弱性曲线研究进展[J]. 地球科学进展, 27(4): 435-442.http://d.wanfangdata.com.cn/Periodical/dqkxjz201204009 [Zhou Y, Wang J A.2012. A review on development of vulnerability curve of natural disaster. Advances in Earth Science, 27(4): 435-442. ]
24 左军成, 左常圣, 李娟, . 2015. 近十年我国海平面变化研究进展[J]. 河海大学学报(自然科学版), 43(5): 442-449.http://www.cqvip.com/QK/91502X/20155/667618795.html [Zuo J C, Zuo C S, Li J, et al.2015. Advances in research on sea level variations in China from 2006 to 2015. Journal of Hohai University (Natural Sciences), 43(5): 442-449. ]
25 Aerts J C J H, Botzen W J W, Emanuel K, et al.2014. Evaluating flood resilience strategies for coastal megacities[J]. Science, 344: 473-475.http://www.sciencemag.org/cgi/doi/10.1126/science.1248222
26 Aerts J C J H, Bouwer L M, Winsemius H C, et al.2016. FLOPROS: An evolving global database of flood protection standards[J]. Natural Hazards and Earth System Sciences, 16(5): 1049-1061.https://www.nat-hazards-earth-syst-sci.net/16/1049/2016/
27 Baarse G.1995. Development of an operational tool for Global Vulnerability Assessment (GVA): Update of the number of people at risk due to sea level rise and increasing flooding probability[M]. CZM-Centre Publication No. 3. Hague, the Netherlands: Ministry of Transport, Public Works and Water Management.
28 Bates P D, De Roo A P J.2000. A simple raster-based model for flood inundation simulation[J]. Journal of Hydrology, 236(1): 54-77.https://linkinghub.elsevier.com/retrieve/pii/S002216940000278X
29 Bradbrook K.2006. JFLOW: A multiscale two-dimensional dynamic flood model[J]. Water and Environment Journal, 20(2): 79-86.http://www.blackwell-synergy.com/toc/wej/20/2
30 Brown S, Hanson S, Nicholls R J.2014. Implications of sea-level rise and extreme events around Europe: A review of coastal energy infrastructure[J]. Climatic Change, 122(1-2): 81-95.http://link.springer.com/10.1007/s10584-013-0996-9
31 Cai F, Su X, Liu J, et al.2009. Coastal erosion in China under the condition of global climate change and measures for its prevention[J]. Progress in Natural Science, 19(4): 415-426.https://linkinghub.elsevier.com/retrieve/pii/S100200710800436X
32 Church J A, Clark P U, Cazenave A, et al.2013. Sea-level rise by 2100[J]. Science, 342: 1445. doi: 10.1126/science.342. 6165.1445-a.http://europepmc.org/abstract/med/24357297
33 Cutter S L, Finch C.2008. Temporal and spatial changes in social vulnerability to natural hazards[J]. PNAS, 105(7): 2301-2306.http://www.pnas.org/cgi/doi/10.1073/pnas.0710375105
DOI: 10.1073/pnas.0710375105      PMID: 18268336     
34 Fang J, Liu W, Yang S, et al.2017. Spatial-temporal changes of coastal and marine disasters risks and impacts in Mainland China[J]. Ocean & Coastal Management, 139: 125-140.http://www.sciencedirect.com/science/article/pii/S0964569117301084
35 Fang J, Sun S, Shi P, et al.2014. Assessment and mapping of potential storm surge impacts on global population and economy[J]. International Journal of Disaster Risk Science, 5(4): 323-331.http://link.springer.com/10.1007/s13753-014-0035-0
36 FEMA.2015. HAZUS-MH flood model: Technical manual [EB/OL]. 2015-12-01[2017-08-22]. .https://www.fema.gov/media-library/assets/documents/24609?id=5120
37 Feng J, von Storch H, Jiang W, et al.2015. Assessing changes in extreme sea levels along the coast of China[J]. Journal of Geophysical Research: Oceans, 120(12): 8039-8051.http://doi.wiley.com/10.1002/2015JC011336
38 Feng X, Tsimplis M N.2014. Sea level extremes at the coasts of China[J]. Journal of Geophysical Research: Oceans, 119(3): 1593-1608.http://doi.wiley.com/10.1002/2013JC009607
39 Galbraith H, Jones R, Park RA, et al, editors.2003. Ecological forecasting: New tools for coastal and marine ecosystem management[M]. Silver Spring, Maryland: NOAA.
40 Hall J W, Meadowcroft I C, Sayers P B, et al.2003. Integrated flood risk management in England and Wales[J]. Natural Hazards Review, 4(3): 126-135.http://ascelibrary.org/doi/10.1061/%28ASCE%291527-6988%282003%294%3A3%28126%29
41 Hallegatte S, Green C, Nicholls R J, et al.2013. Future flood losses in major coastal cities[J]. Nature Climate Change, 3(9): 802-806.
42 Hanson S, Nicholls R, Ranger N, et al.2011. A global ranking of port cities with high exposure to climate extremes[J]. Climatic Change, 104(1): 89-111.http://link.springer.com/10.1007/s10584-010-9977-4
43 Hinkel J, Klein R J T.2009. Integrating knowledge to assess coastal vulnerability to sea-level rise: The development of the DIVA tool[J]. Global Environmental Change, 19(3): 384-395.https://linkinghub.elsevier.com/retrieve/pii/S0959378009000247
44 Hinkel J, Lincke D, Vafeidis A T, et al.2014. Coastal flood damage and adaptation costs under 21st century sea-level rise[J]. PNAS, 111(9): 3292-3297.http://www.pnas.org/lookup/doi/10.1073/pnas.1222469111
DOI: 10.1073/pnas.1222469111      PMID: 24596428     
45 Hinkel J, Jaeger C, Nicholls R J, et al.2015. Sea-level rise scenarios and coastal risk management[J]. Nature Climate Change, 5(3): 188-190.http://www.nature.com/nclimate/journal/v5/n3/nclimate2505/metrics
46 Hoozemans F M J, Marchand M, Pennekamp H A.1993. Sea level rise: A global vulnerability assessment: Vulnerability assessment for population, coastal wetlands and rice production on a global scale[M]. Hague, the Netherlands: Delft Hydraulics.
47 Hu P, Zhang Q, Shi P, et al.2018. Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors[J]. Science of the Total Environment, 643: 171-182.https://linkinghub.elsevier.com/retrieve/pii/S0048969718322745
48 IPCC. 1990. Intergovernmental panel on climate change climate change 1990: First assessment report (AR1) [M]. Cambridge, UK: Cambridge University Press.
49 IPCC. 2013. Intergovernmental panel on climate change climate change 2013: Fifth assessment report (AR5) [M]. Cambridge, UK: Cambridge University Press.
50 Jevrejeva S, Grinsted A, Moore J C.2014. Upper limit for sea level projections by 2100[J]. Environmental Research Letters, 9, doi: 10.1088/1748-9326/9/10/104008.http://adsabs.harvard.edu/abs/2014ERL.....9j4008J
51 Jongman B, Ward P J, Aerts J C J H.2012. Global exposure to river and coastal flooding: Long term trends and changes[J]. Global Environmental Change, 22(4): 823-835.https://linkinghub.elsevier.com/retrieve/pii/S0959378012000830
52 Jonkman S N, Vrijling J K.2008. Loss of life due to floods[J]. Journal of Flood Risk Management, 1(1): 43-56.http://doi.wiley.com/10.1111/j.1753-318X.2008.00006.x
53 Kang L, Ma L, Liu Y.2016. Evaluation of farmland losses from sea level rise and storm surges in the Pearl River Delta region under global climate change[J]. Journal of Geographical Sciences, 26(4): 439-456.http://link.springer.com/10.1007/s11442-016-1278-z
54 Kebede A S, Nicholls R J.2012. Exposure and vulnerability to climate extremes: Population and asset exposure to coastal flooding in Dar es Salaam, Tanzania[J]. Regional Environmental Change, 12(1): 81-94.http://link.springer.com/10.1007/s10113-011-0239-4
55 Klein R J T, Nicholls R J.1999. Assessment of coastal vulnerability to climate change[J]. AMBIO, 28(2): 182-187.http://www.jstor.org/stable/4314873
56 Kopp R E, Horton R M, Little C M, et al.2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites[J]. Earth's Future, 2(8): 383-406.http://doi.wiley.com/10.1002/2014EF000239
57 Lamb R, Keef C, Tawn J, et al.2010. A new method to assess the risk of local and widespread flooding on rivers and coasts[J]. Journal of Flood Risk Management, 3(4): 323-336.http://doi.wiley.com/10.1111/jfrm.2010.3.issue-4
58 Lemmen D S, Warren F J, James T S, et al.2016. Canada's marine coasts in a changing climate [R]. Ottawa, Canada: Government of Canada.
59 Lin N, Emanuel K, Oppenheimer M, et al.2012. Physically based assessment of hurricane surge threat under climate change[J]. Nature Climate Change, 2(6): 462-467.http://www.nature.com/nclimate/journal/v2/n6/abs/nclimate1389.html
60 Lin N, Emanuel K.2016. Grey swan tropical cyclones[J]. Nature Climate Change, 6(1): 106-111.
61 Linham M M, Nicholls R J.2012. Adaptation technologies for coastal erosion and flooding: A review[J]. Proceedings of the ICE—Maritime Engineering, 165(3): 95-112.
62 Liu J, Wen J, Huang Y, et al.2015. Human settlement and regional development in the context of climate change: A spatial analysis of low elevation coastal zones in China[J]. Mitigation and Adaptation Strategies for Global Change, 20(4): 527-546.http://link.springer.com/10.1007/s11027-013-9506-7
63 Lowe J, Howard T, Pardaens A, et al.2009. UK Climate Projections science report: Marine and coastal projections[M]. Exeter, UK: Met Office Hadley Centre.
64 Ma Z, Melville D S, Liu J, et al.2014. Rethinking China's new great wall[J]. Science, 346: 912-914.http://www.sciencemag.org/cgi/doi/10.1126/science.1257258
65 Marcos M, Tsimplis M N, Shaw A G P.2009. Sea level extremes in southern Europe[J]. Journal of Geophysical Research: Oceans, 114, doi: 10.1029/2008JC004912.http://onlinelibrary.wiley.com/doi/10.1029/2008JC004912/full
66 Mawdsley R J, Haigh I D.2016. Spatial and temporal variability and long-term trends in skew surges globally[J]. Frontiers in Marine Science, 3. doi: 10.3389/fmars.2016.00029.
67 Mcleod E, Poulter B, Hinkel J, et al.2010. Sea-level rise impact models and environmental conservation: A review of models and their applications[J]. Ocean & Coastal Management, 53(9): 507-517.http://www.sciencedirect.com/science/article/pii/S0964569110000852
68 Menéndez M, Woodworth P L.2010. Changes in extreme high water levels based on a quasi-global tide-gauge data set[J]. Journal of Geophysical Research: Oceans, 115. doi: 10.1029/2009JC005997.http://www.onacademic.com/detail/journal_1000035774090910_8461.html
69 Muis S, Verlaan M, Winsemius H C, et al.2016. A global reanalysis of storm surges and extreme sea levels[J]. Nature Communications, 7. doi: 10.1038/ncomms11969.http://europepmc.org/articles/PMC4931224/
DOI: 10.1038/ncomms11969      PMID: 4931224     
70 Nicholls R J.2004. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios[J]. Global Environmental Change, 14(1): 69-86.https://linkinghub.elsevier.com/retrieve/pii/S0959378003000815
71 Nicholls R J, Cazenave A.2010. Sea-level rise and its impact on coastal zones[J]. Science, 328: 1517-1520.http://www.sciencemag.org/cgi/doi/10.1126/science.1185782
DOI: 10.1126/science.1185782      PMID: 20558707     
72 Nicholls R J, Hanson S E, Lowe J A, et al.2014. Sea-level scenarios for evaluating coastal impacts[J]. Wiley Interdisciplinary Reviews: Climate Change, 5(1): 129-150.http://doi.wiley.com/10.1002/wcc.253
DOI: 10.1002/wcc.253     
73 Nicholls R J, Hoozemans F M J, Marchand M.1999. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses[J]. Global Environmental Change, 9: S69-S87.https://linkinghub.elsevier.com/retrieve/pii/S0959378099000199
74 Nicholls R J, Mimura N.1998. Regional issues raised by sea-level rise and their policy implications[J]. Climate Research, 11(1): 5-18.http://www.int-res.com/abstracts/cr/v11/n1/p5-18/
DOI: 10.3354/cr011005     
75 Parris A S, Bromirski P, Burkett V, et al.2012. Global sea level rise scenarios for the United States National Climate Assessment [R]. NOAA Tech Memo OAR Climate Program Office.
76 Pelling M, Blackburn S.2014. Megacities and the coast: Risk, resilience and transformation[M]. London, UK: Routledge.
77 Rahmstorf S.2017. Rising hazard of storm-surge flooding[J]. PNAS, 114(45): 11806-11808.http://www.pnas.org/lookup/doi/10.1073/pnas.1715895114
DOI: 10.1073/pnas.1715895114      PMID: 29078412     
78 Rosenzweig C, Solecki W D.2010. Introduction to climate change adaptation in New York City: Building a risk management response[J]. Annals of the New York Academy of Sciences, 1196: 1-17.http://doi.wiley.com/10.1111/j.1749-6632.2009.05415.x
79 Rowley R J, Kostelnick J C, Braaten D, et al.2007. Risk of rising sea level to population and land area[J]. Eos, Transactions, American Geophysical Union, 88(9): 105-107.http://onlinelibrary.wiley.com/doi/10.1029/2007EO090001/pdf
80 Sayers P B, Horritt M, Penning-Rowsell E, et al.2017. Climate change risk assessment 2017: Projections of future flood risk in the UK [R]. London, UK: Committee on Climate Change.
81 Shibayama T.2015. Field surveys of recent storm surge disasters[J]. Procedia Engineering, 116: 179-186.https://linkinghub.elsevier.com/retrieve/pii/S1877705815019359
82 Spencer T, Schuerch M, Nicholls R J, et al.2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model[J]. Global and Planetary Change, 139: 15-30.https://linkinghub.elsevier.com/retrieve/pii/S0921818115301879
83 Sterr H.2008. Assessment of vulnerability and adaptation to sea-level rise for the coastal zone of Germany[J]. Journal of Coastal Research, 24(2): 380-393.
DOI: 10.2112/07A-0011.1     
84 Su S, Pi J, Wan C, et al.2015. Categorizing social vulnerability patterns in Chinese coastal cities[J]. Ocean & Coastal Management, 116: 1-8.
85 Syvitski J P M, Kettner A J, Overeem I, et al.2009. Sinking deltas due to human activities[J]. Nature Geoscience, 2(10): 681-686.
86 Townsend.2006. The federal response to hurricane katrina-lessons learned [R]. Washington, DC: White House.
87 UNISDR.2009. Terminology on disaster risk reduction [R]. New York, NY: UNISDR.
88 Vousdoukas M I, Mentaschi L, Voukouvalas E, et al.2018. Climatic and socioeconomic controls of future coastal flood risk in Europe[J]. Nature Climate Change, 8(9): 776-780.http://www.nature.com/articles/s41558-018-0260-4
89 Wahl T, Chambers D P.2015. Evidence for multidecadal variability in US extreme sea level records[J]. Journal of Geophysical Research: Oceans, 120(3): 1527-1544.http://doi.wiley.com/10.1002/2014JC010443
90 Wahl T, Haigh I D, Nicholls R J, et al.2017. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis[J]. Nature Communications, 8. doi: 10.1038/ncomms16075.http://www.nature.com/articles/ncomms16075/
DOI: 10.1038/ncomms16075      PMID: 5504349     
91 Wahl T, Jain S, Bender J, et al.2015. Increasing risk of compound flooding from storm surge and rainfall for major US cities[J]. Nature Climate Change, 5(12): 1093-1097.
92 Wang J, Gao W, Xu S, et al.2012. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China[J]. Climatic Change, 115(3-4): 537-558.http://link.springer.com/10.1007/s10584-012-0468-7
93 Ward P J, Jongman B, Aerts J C J H, et al.2017. A global framework for future costs and benefits of river-flood protection in urban areas[J]. Nature Climate Change, 7(9): 642-646.http://www.nature.com/articles/nclimate3350
94 Willis H H, Narayanan A, Fischbach J R, et al.2016. Current and future exposure of infrastructure in the United States to Natural Hazards[M]. California, CA: RAND.
95 Woodruff J D, Irish J L, Camargo S J.2013. Coastal flooding by tropical cyclones and sea-level rise[J]. Nature, 504: 44-52.http://europepmc.org/abstract/med/24305147
DOI: 10.1038/nature12855      PMID: 24305147     
96 Woodworth P L, Blackman D L.2004. Evidence for systematic changes in extreme high waters since the mid-1970s[J]. Journal of Climate, 17(6): 1190-1197.http://journals.ametsoc.org/doi/abs/10.1175/1520-0442%282004%29017%3C1190%3AEFSCIE%3E2.0.CO%3B2
97 Woodworth P L, Menéndez M, Gehrels W R.2011. Evidence for century-timescale acceleration in mean sea levels and for recent changes in extreme sea levels[J]. Surveys in Geophysics, 32(4-5): 603-618.http://link.springer.com/10.1007/s10712-011-9112-8
98 Wu S, Feng A, Gao J, et al.2017. Shortening the recurrence periods of extreme water levels under future sea-level rise[J]. Stochastic Environmental Research and Risk Assessment, 31(10): 2573-2584.http://link.springer.com/10.1007/s00477-016-1327-2
99 Yin J, Yin Z, Xu S.2013. Composite risk assessment of typhoon-induced disaster for China's coastal area[J]. Natural Hazards, 69(3): 1423-1434.http://link.springer.com/10.1007/s11069-013-0755-2
100 Yin J, Yu D, Lin N, et al.2017. Evaluating the cascading impacts of sea level rise and coastal flooding on emergency response spatial accessibility in Lower Manhattan, New York City[J]. Journal of Hydrology, 555: 648-658.https://linkinghub.elsevier.com/retrieve/pii/S0022169417307321
101 Yin J, Yu D, Yin Z, et al.2016. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China[J]. Journal of Hydrology, 537: 138-145.https://linkinghub.elsevier.com/retrieve/pii/S0022169416301421
102 Yu D, Lane S N.2006a. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: Mesh resolution effects[J]. Hydrological Processes, 20(7): 1541-1565.http://doi.wiley.com/10.1002/%28ISSN%291099-1085
DOI: 10.1002/hyp.5935     
103 Yu D, Lane S N.2006b. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: Development of a sub-grid-scale treatment[J]. Hydrological Processes, 20(7): 1567-1583.http://doi.wiley.com/10.1002/%28ISSN%291099-1085
DOI: 10.1002/hyp.5936     
104 Zheng F F, Westra S, Leonard M, et al.2014. Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk[J]. Water Resources Research, 50(3): 2050-2071.http://doi.wiley.com/10.1002/2013WR014616
105 Zscheischler J, Westra S, Hurk B J, et al.2018. Future climate risk from compound events[J]. Nature Climate Change, 8: 469-477.http://www.nature.com/articles/s41558-018-0156-3
[1] 戴旭俊,刘爱利. 地方认同的内涵维度及影响因素研究进展[J]. 地理科学进展, 2019, 38(5): 662-674.
[2] 姜玉培,甄峰,王文文,赵梦妮. 城市建成环境对居民身体活动的影响研究进展与启示[J]. 地理科学进展, 2019, 38(3): 357-369.
[3] 张会,李铖,程炯,吴志峰,吴艳艳. 基于“H-E-V”框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(2): 175-190.
[4] 张书颖,刘家明,朱鹤,李涛. 国外生态旅游研究进展及启示[J]. 地理科学进展, 2018, 37(9): 1201-1215.
[5] 宋琼,赵新正,李同昇,刘静玉. 多重城市网络空间结构及影响因素——基于有向多值关系视角[J]. 地理科学进展, 2018, 37(9): 1257-1267.
[6] 宋伟轩,马雨竹,陈艳如. 南京城区住宅售租价格时空分异与影响因素[J]. 地理科学进展, 2018, 37(9): 1268-1276.
[7] 张宁,王大为. 基于风险地形建模的毒品犯罪风险评估和警务预测[J]. 地理科学进展, 2018, 37(8): 1131-1139.
[8] 王建顺,林李月,朱宇,艾尼江·杰力力. 西部民族地区流动人口户籍迁移意愿及影响因素——以新疆为例[J]. 地理科学进展, 2018, 37(8): 1140-1149.
[9] 王圣云,罗玉婷,韩亚杰,李晶. 中国人类福祉地区差距演变及其影响因素——基于人类发展指数(HDI)的分析[J]. 地理科学进展, 2018, 37(8): 1150-1158.
[10] 廖凯华,吕立刚. 东南湿润区坡面土壤水文过程研究进展与展望[J]. 地理科学进展, 2018, 37(4): 476-484.
[11] 梅林,郭艳花,陈妍. 吉林省人口老龄化时空分异特征及成因[J]. 地理科学进展, 2018, 37(3): 352-362.
[12] 刘锦,田银生. 粤港澳大湾区背景下的珠三角城市群产业—人口—空间交互影响机理[J]. 地理科学进展, 2018, 37(12): 1653-1662.
[13] 刘耀林,张扬,张琰,刘以,王好峰,刘艳芳. 特大城市“三线冲突”空间格局及影响因素[J]. 地理科学进展, 2018, 37(12): 1672-1681.
[14] 赵宏波,冯渊博,董冠鹏,苗长虹. 大城市居民自评健康与环境危害感知的空间差异及影响因素——基于郑州市区的实证研究[J]. 地理科学进展, 2018, 37(12): 1713-1726.
[15] 瞿诗进,胡守庚,李全峰,杨剩富. 城市住宅地价影响因素的定量识别与时空异质性——以武汉市为例[J]. 地理科学进展, 2018, 37(10): 1371-1380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 地理科学进展
技术支持: 北京玛格泰克科技发展有限公司