地理科学进展 ›› 2018, Vol. 37 ›› Issue (6): 823-832.doi: 10.18306/dlkxjz.2018.06.009
张洪源1,2(), 吴艳红2,*(
), 刘衍君1, 郭立男2,3
收稿日期:
2018-01-08
修回日期:
2018-04-11
出版日期:
2018-06-28
发布日期:
2018-06-28
通讯作者:
吴艳红
作者简介:
作者简介:张洪源(1992-),男,硕士研究生,研究方向为遥感水文,E-mail:
基金资助:
Hongyuan ZHANG1,2(), Yanhong WU2,*(
), Yanjun LIU1, Linan GUO2,3
Received:
2018-01-08
Revised:
2018-04-11
Online:
2018-06-28
Published:
2018-06-28
Contact:
Yanhong WU
Supported by:
摘要:
青藏高原湖泊水量的变化是揭示全球气候变化及其区域水循环响应的重要信息载体。区别于常用的水文学方法,本文利用MODIS遥感影像和LEGOS高度计多年连续数据,基于湖泊水位—面积关系,探讨了湖泊水量变化的遥感分析方法,并以青藏高原面积最大的青海湖为例,揭示青海湖近20年来(2001-2016)湖泊水量年内与年际变化特征。主要结论为:青海湖湖泊面积在2001-2016年间整体扩张了187.9 km2,变化速率为11.6 km2/a;水位在2001-2014年间上升了1.15 m,变化速率为0.10 m/a。青海湖水位—面积关系表现为二次函数关系(相关系数R2=0.83)。基于水位—面积关系,进一步估算分析了青海湖水量平衡的净收支及其年内和年际变化。近20年来,青海湖水量总体呈增加趋势,其变化率约为4.5
张洪源, 吴艳红, 刘衍君, 郭立男. 近20年青海湖水量变化遥感分析[J]. 地理科学进展, 2018, 37(6): 823-832.
Hongyuan ZHANG, Yanhong WU, Yanjun LIU, Linan GUO. Water storage variation of the Qinghai Lake in recent decades based on satellite observation[J]. PROGRESS IN GEOGRAPHY, 2018, 37(6): 823-832.
表1
青海湖面积、水位数据精度验证"
面积比较 | 水位比较 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
日期 | MODIS/km2 | 日期 | Landsat/km2 | 相对误差/% | 日期 | Legos/m | 日期 | 水文站/m | 相对误差/% | |
2001.07.12 | 4156.69 | 2001.07.12 | 4184.65 | -0.67 | 2004.02.19 | 3193.40 | 2004.02.19 | 3193.27 | 0.004 | |
2004.10.07 | 4188.25 | 2004.10.08 | 4203.00 | -0.35 | 2005.05.22 | 3193.27 | 2005.05.22 | 3193.22 | 0.002 | |
2008.08.12 | 4216.27 | 2008.08.16 | 4257.90 | -0.98 | 2006.10.30 | 3193.80 | 2006.10.30 | 3193.75 | 0.002 | |
2012.10.31 | 4277.98 | 2012.10.30 | 4296.11 | -0.42 | 2007.03.18 | 3193.69 | 2007.03.17 | 3193.60 | 0.003 | |
2016.07.28 | 4303.09 | 2016.07.29 | 4315.09 | -0.28 | 2008.02.29 | 3193.93 | 2008.02.27 | 3193.74 | 0.006 |
[1] |
车向红, 冯敏, 姜浩, 等. 2015. 2000-2013年青藏高原湖泊面积MODIS遥感监测分析[J]. 地球信息科学学报, 17(1): 99-107.
doi: 10.3724/SP.J.1047.2015.00099 |
[Che X H, Feng M, Jiang H, et al.2015. Detection and analysis of Qinghai-Tibet Plateau Lake area from 2000 to 2013[J]. Journal of Geo-Information Science, 17(1): 99-107.]
doi: 10.3724/SP.J.1047.2015.00099 |
|
[2] | 陈亮, 陈克龙, 刘宝康, 等. 2011. 近50a青海湖流域气候变化特征分析[J]. 干旱气象, 29(4): 483-487. |
[Chen L, Chen K L, Liu B K, et al.2011. Characteristics of climate variation in Qinghai Lake Basin during the recent 50 years[J]. Journal of Arid Meteorology, 29(4): 483-487.] | |
[3] | 董斯扬, 薛娴, 尤全刚, 等. 2014. 近40年青藏高原湖泊面积变化遥感分析[J]. 湖泊科学, 26(4): 535-544. |
[Dong S Y, Xue X, You Q G, et al.2014. Remote sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40 years[J]. Journal of Lake Sciences, 26(4): 535-544.] | |
[4] |
郭超, 马玉贞, 胡彩莉, 等. 2014. 中国内陆区湖泊沉积所反映的全新世干湿变化[J]. 地理科学进展, 33(6): 786-798.
doi: 10.11820/dlkxjz.2014.06.007 |
[Guo C, Ma Y Z, Hu C L, et al.2014. Holocene humidity changes in inland China inferred from lake sediments[J]. Progress in Geography, 33(6): 786-798.]
doi: 10.11820/dlkxjz.2014.06.007 |
|
[5] |
郭海荣, 焦文海, 杨元喜. 2004. 1985国家高程基准与全球似大地水准面之间的系统差及其分布规律[J]. 测绘学报, 33(2): 100-104.
doi: 10.3321/j.issn:1001-1595.2004.02.002 |
[Guo H R, Jiao W H, Yang Y X.2004. The systematic difference and its distribution between the 1985 National Height Datum and the Global Quasigeoid[J]. Acta Geodaetica Et Cartographic Sinica, 33(2): 100-104.]
doi: 10.3321/j.issn:1001-1595.2004.02.002 |
|
[6] |
姜加虎, 黄群. 2004. 青藏高原湖泊分布特征及与全国湖泊比较[J]. 水资源保护,(6): 24-27, 70.
doi: 10.3969/j.issn.1004-6933.2004.06.006 |
Jiang J H.2004. Distribution and variation of lakes in Tibetan Plateau and their comparison with lakes in other part of China[J]. Water Resources Protection,(6): 24-27, 70.
doi: 10.3969/j.issn.1004-6933.2004.06.006 |
|
[7] |
焦文海, 魏子卿, 马欣, 等. 2002. 1985国家高程基准相对于大地水准面的垂直偏差[J]. 测绘学报, 31(3): 196-200.
doi: 10.3321/j.issn:1001-1595.2002.03.003 |
[Jiao W H, Wei Z Q, Ma X, et al.2002. The origin vertical shift of National Height Datum 1985 with respect to the geoidal surface[J]. Acta Geodaetica Et Cartographic Sinica, 31(3): 196-200.]
doi: 10.3321/j.issn:1001-1595.2002.03.003 |
|
[8] | 金章东, 张飞, 王红丽, 等. 2013. 2005年以来青海湖水位持续回升的原因分析[J]. 地球环境学报, (3): 1355-1362. |
[Jin Z D, Zhang F, Wang H L, et al.2013. The reason of rising water level in Lake Qinghai since 2005[J]. Journal of Earth Environment, (3): 1355-1362.] | |
[9] |
李均力, 盛永伟, 骆剑承, 等. 2011. 青藏高原内陆湖泊变化的遥感制图[J]. 湖泊科学, 23(3): 311-320.
doi: 10.18307/2011.0301 |
[Li J L, Sheng Y W, Luo J C, et al.2011. Remotely sensed mapping of inland lake area changes in the Tibetan Plateau[J]. Journal of Lake Sciences, 23(3): 311-320.]
doi: 10.18307/2011.0301 |
|
[10] |
李林, 时兴合, 申红艳, 等. 2011. 1960-2009年青海湖水位波动的气候成因探讨及其未来趋势预测[J]. 自然资源学报, 26(9): 1566-1574.
doi: 10.11849/zrzyxb.2011.09.012 |
[Li L, Shi X H, Shen H Y, et al.2011. Cause of water level fluctuation in Qinghai Lake from 1960 to 2009 and its future trend forecasting[J]. Journal of Natural Resources, 26(9): 1566-1574.]
doi: 10.11849/zrzyxb.2011.09.012 |
|
[11] |
李晓东, 肖建设, 李凤霞, 等. 2012. 基于EOS/MODIS数据的近10 a青海湖遥感监测[J]. 自然资源学报, 27(11): 1962-1970.
doi: 10.11849/zrzyxb.2012.11.015 |
[Li X D, Xiao J S, Li F X, et al.2012. Remote sensing monitoring of the Qinghai Lake based on EOS/MODIS data in recent 10 years[J]. Journal of Natural Resources, 27(11): 1962-1970.]
doi: 10.11849/zrzyxb.2012.11.015 |
|
[12] |
李晓英, 姚正毅, 肖建华, 等. 2016. 1961-2010年青藏高原降水时空变化特征分析[J]. 冰川冻土, 38(5): 1233-1240.
doi: 10.7522/j.issn.1000-0240.2016.0144 |
[Li X Y, Yao Z Y, Xiao J H, et al.2016. Analysis of the spatial-temporal variation characteristics of precipitation over the Tibetan Plateau from 1961 through 2010[J]. Journal of Glaciology and Geocryology, 38(5): 1233-1240.]
doi: 10.7522/j.issn.1000-0240.2016.0144 |
|
[13] |
李燕, 段水强, 金永明. 2014. 1956-2011年青海湖变化特征及原因分析[J]. 人民黄河, (6): 87-89.
doi: 10.3969/J.issn.1000-1379.2014.06.028 |
[Li Y, Duan S Q, Jin Y M.2014. Analysis of features and causes of Qinghai Lake during the period of 1956-2011[J]. Yellow River, (6): 87-89.]
doi: 10.3969/J.issn.1000-1379.2014.06.028 |
|
[14] | 刘宝康, 卫旭丽, 杜玉娥, 等. 2013. 基于环境减灾卫星数据的青海湖面积动态[J]. 草业科学, 30(2): 178-184. |
[Liu B K, Wei X L, Du Y E, et al.2013. Dynamics of Qinghai Lake area based on environmental mitigation satellite data[J]. Pratacultural Science, 30(2): 178-184.] | |
[15] | 刘佳, 王芳, 于福亮. 2009. 青海湖水位动态趋势预测[J]. 水利学报, 40(3): 319-327. |
[Liu J, Wang F, Yu F L.2009. Variation tendency prediction of dynamic water level in Qinghai Lake[J]. Journal of Hydraulic Engineering, 40(3): 319-327.] | |
[16] |
刘瑞霞, 刘玉洁. 2008. 近20年青海湖湖水面积变化遥感[J].湖泊科学, 20(1): 135-138.
doi: 10.18307/2008.0121 |
[Liu R X, Liu Y J.2008. Area changes of lake Qinghai in the latest 20 years based on remote sensing study[J]. Journal of Lake Sciences, 20(1): 135-138.]
doi: 10.18307/2008.0121 |
|
[17] |
卢善龙, 吴炳方, 闫娜娜, 等. 2010. 河川径流遥感监测研究进展[J]. 地球科学进展, 25(8): 820-826.
doi: 10.11867/j.issn.1001-8166.2010.08.0820 |
[Lu S L, Wu B F, Yan N N, et al.2010. Progress in river runoff monitoring by remote sensing[J]. Advances in Earth Science, 25(8): 820-826.]
doi: 10.11867/j.issn.1001-8166.2010.08.0820 |
|
[18] |
鲁安新, 王丽红, 姚檀栋. 2006. 青藏高原湖泊现代变化遥感方法研究[J]. 遥感技术与应用, 21(3): 173-177.
doi: 10.3969/j.issn.1004-0323.2006.03.001 |
[Lu A X, Wang L H, Yao T D.2006. The study of Yamzho Lake and Chencuo Lake variation using remote sensing in Tibet Plateau from 1970 to 2000[J]. Remote Sensing Technology and Application, 21(3): 173-177.]
doi: 10.3969/j.issn.1004-0323.2006.03.001 |
|
[19] |
骆成凤, 许长军, 曹银璇, 等. 2017. 1974-2016年青海湖水面面积变化遥感监测[J]. 湖泊科学, 29(5): 1245-1253.
doi: 10.18307/2017.0523 |
[Luo C F, Xu C J, Cao Y X, et al.2017. Monitoring of water surface area in Lake Qinghai from 1974 to 2016[J]. Journal of Lake Science, 29(5): 1245-1253.]
doi: 10.18307/2017.0523 |
|
[20] | 祁苗苗, 姚晓军, 李晓锋, 等. 2018. 2000-2016年青海湖湖冰物候特征变化[J]. 地理学报, 73(5): 932-944. |
[Qi M M, Yao X J, Li X F, et al.2018. Spatial-temporal characteristics of ice phenology of Qinghai Lake from 2000 to 2016[J]. Acta Geographica Sinica, 73(5): 932-944.] | |
[21] |
时兴合, 李生辰, 安迪, 等. 2010. 青海湖水面蒸发量变化的研究[J]. 气候与环境研究, 15(6): 787-796.
doi: 10.3878/j.issn.1006-9585.2010.06.08 |
[Shi X H, Li S C, An D, et al.2010. A study of the change of Qinghai Lake evaporation[J]. Climatic and Environmental Research, 15(6): 787-796.]
doi: 10.3878/j.issn.1006-9585.2010.06.08 |
|
[22] | 王苏民. 1998. 中国湖泊志[M]. 北京: 科学出版社. |
[Wang S M.1998. Records of Lakes in China[M]. Beijing: Science Press.] | |
[23] | 吴成启, 唐登勇. 2017. 近50年来全球变暖背景下青藏高原气温变化特征[J]. 水土保持研究, 24(6): 262-266. |
[Wu C Q, Tang D Y.2017. Change of temperature in the Tibetan Plateau in the context of global warming in recent 50 years[J]. Research of Soil and Water Conservation, 24(6): 262-266.] | |
[24] | 闫立娟, 郑绵平, 魏乐军. 2016. 近40年来青藏高原湖泊变迁及其对气候变化的响应[J]. 地学前缘, 23(4): 310-323. |
[Yan L J, Zheng M P, Wei L J.2016. Change of the lakes in Tibetan Plateau and its response to climate in the past forty years[J]. Earth Science Frontiers, 23(4): 310-323.] | |
[25] |
于革, 赖格英, 薛滨, 等. 2004. 中国西部湖泊水量对未来气候变化的响应: 蒙特卡罗概率法在气候模拟输出的应用[J]. 湖泊科学, 16(3): 193-202.
doi: 10.3321/j.issn:1003-5427.2004.03.001 |
[Yu G, Lai G Y, Xue B, et al.2004. Preliminary study on the responses of lake water from the Western China to climate change in the future: Monte Carlo Analysis applied in GCM simulations and lake water changes[J]. Journal of Lake Science, 16(3): 193-202.]
doi: 10.3321/j.issn:1003-5427.2004.03.001 |
|
[26] | 岳辉, 刘英, 杨维涛, 等. 2017. 近40年来中国西北内陆5个典型湖泊面积变化遥感分析[J]. 水资源与水工程学报, (6): 27-32. |
[Yue H, Liu Y, Yang W T, et al.2017. Remote sensing analysis on lake area variations of 5 typical lakes in the Northwest of China over the past 40 years[J]. Journal of Water Resources and Water Engineering, (6): 27-32.] | |
[27] |
张国庆. 2018. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 37(2): 214-223.
doi: 10.18306/dlkxjz.2018.00.000 |
[Zhang G Q.2018. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate[J]. Progress in Geography, 37(2): 214-223.]
doi: 10.18306/dlkxjz.2018.00.000 |
|
[28] | 张国庆, Xie H J, 姚檀栋, 等. 2013. 基于ICESat和Landsat的中国十大湖泊水量平衡估算[J]. 科学通报, 58(26): 2664-2678. |
[Zhang G Q, Xie H J, Yao T D, et al.2013. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data[J]. Chinese Science Bulletin, 58(26): 2664-2678.] | |
[29] | 张鑫, 吴艳红, 张鑫. 2014. 1972-2012年青藏高原中南部内陆湖泊的水位变化[J]. 地理学报, 69(7): 993-1001. |
[Zhang X, Wu Y H, Zhang X.2014. Water level variation of inland lakes on the south-central Tibatan Plateau in 1972-2012[J]. Acta Geographica Sinica, 69(7): 993-1001.] | |
[30] |
赵云, 廖静娟, 沈国状, 等. 2017. 卫星测高数据监测青海湖水位变化[J]. 遥感学报, 21(4): 633-644.
doi: 10.11834/jrs.20176217 |
[Zhao Y, Liao J J, Shen G Z.et al.2017. Monitoring the water level changes in Qinghai Lake with satellite altimetry data[J]. Journal of Remote Sensing, 21(4): 633-644.]
doi: 10.11834/jrs.20176217 |
|
[31] | 中国科学院兰州分院. 1994. 青海湖近代环境的演化和预测[M]. 北京: 科学出版社. |
[Lanzhou Branch of Chinese Academy of Sciences. 1994. Prediction and recent environmental development of Qinghai Lake[M]. Beijing: Science Press.] | |
[32] |
Duan Z, Bastiaanssen W G M.2013. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data[J]. Remote Sensing of Environment, 134(5): 403-416.
doi: 10.1016/j.rse.2013.03.010 |
[33] |
Freymueller J T.2011. Earth science: A new mechanical model for Tibet[J]. Nature, 472: 48.
doi: 10.1038/472048a |
[34] |
Kropáček J, Braun A, Kang S, et al.2012. Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery[J]. International Journal of Applied Earth Observations & Geoinformation, 17(S1): 3-11.
doi: 10.1016/j.jag.2011.10.001 |
[35] |
Li X Y, Xu H Y, Sun Y L, et al.2007. Lake-level change and water balance analysis at Lake Qinghai, West China during recent decades[J]. Water Resources Management, 21(9): 1505-1516.
doi: 10.1007/s11269-006-9096-1 |
[36] |
Liu J S, Wang S Y, Yu S M, et al.2009. Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau[J]. Global & Planetary Change, 67(3-4): 209-217.
doi: 10.1016/j.gloplacha.2009.03.010 |
[37] |
Phan V H, Lindenbergh R, Menenti M.2012. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009[J]. International Journal of Applied Earth Observation & Geoinformation, 17(7): 12-22.
doi: 10.1016/j.jag.2011.09.015 |
[38] | Solomon S, IPCC.2007. Climate change the physical science basis[J]. American Geophysical Union, 9(1): 123-124. |
[39] |
Song C Q, Huang B, Ke L H.2013. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J]. Remote Sensing of Environment, 135(4): 25-35.
doi: 10.1016/j.rse.2013.03.013 |
[40] |
Steinman A.2005. The lakes handbook: Volume 1: Limnology and limnetic ecology[J]. Journal of the North American Benthological Society, 24(2): 441-442.
doi: 10.1899/0887-3593(2005)24[441:BR]2.0.CO;2 |
[41] | Taube C M.2000. Instructions for winter lake mapping[R]//Schneider J C. Manual of fisheries survey methods II: With periodic updates. Michigan Department of Natural Resources, Fisheries Special Report 25. Ann Arbor, MI: 1-4. |
[42] |
Ünal Y, Erdoğan S, Uysal M.2011. Changes in the coastline and water level of the Akşehir and Eber Lakes between 1975 and 2009[J]. Water Resources Management, 25(3): 941-962.
doi: 10.1007/s11269-010-9735-4 |
[43] |
Wan W, Xiao P F, Feng X Z, et al.2014. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J]. Chinese Science Bulletin, 59(10): 1021-1035.
doi: 10.1007/s11434-014-0128-6 |
[44] |
Wang X W, Gong P, Zhao Y Y, et al.2013. Water-level changes in China's large lakes determined from ICESat/GLAS data[J]. Remote Sensing of Environment, 132: 131-144.
doi: 10.1016/j.rse.2013.01.005 |
[45] |
Wischnewski J, Kramer A, Kong Z C, et al.2011. Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries[J]. Global Change Biology, 17(11): 3376-3391.
doi: 10.1111/j.1365-2486.2011.02474.x |
[46] |
Wu Y H, Zhu L P, Ye Q H, et al.2008. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970-2000[J]. Journal of Geographical Sciences, 62(2): 301-311.
doi: 10.1007/s11442-008-0177-3 |
[47] |
Zhang G Q, Xie H J, Duan S Q, et al.2011. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change[J]. Journal of Applied Remote Sensing, 5(1): 3532.
doi: 10.1117/1.3601363 |
[48] |
Zhang G Q, Xie H J, Kang S C, et al.2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)[J]. Remote Sensing of Environment, 115(7): 1733-1742.
doi: 10.1016/j.rse.2011.03.005 |
[49] |
Zheng M P, Qi W, Jiang X F, et al.2004. Trend of salt lake changes in the background of global warming and tactics for adaptation to the changes[J]. Acta Geologica sinica, 78(3): 795-807.
doi: 10.1111/j.1755-6724.2004.tb00198.x |
[50] |
Zhu W B, Jia S F, Lv A F.2014. Monitoring the fluctuation of Lake Qinghai using multi-source remote sensing data[J]. Remote Sensing, 6(11): 10457-10482.
doi: 10.3390/rs61110457 |
[1] | 史潇, 王国杰, 孙明, 李玉涛, 王博妮, 沈婕. 高分辨红外辐射探测器地表温度数据在江苏地区1980—2009年间适用性评估[J]. 地理科学进展, 2020, 39(8): 1283-1295. |
[2] | 廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5): 709-715. |
[3] | 胡栩, 聂勇, 徐霞, 蒋盛, 张镱锂. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590. |
[4] | 史卓琳, 黄昌. 河流水情要素遥感研究进展[J]. 地理科学进展, 2020, 39(4): 670-684. |
[5] | 唐寅, 王中根, 王婉清, 黄火键, 袁勇. 适用于遥感影像的水生态空间多功能分类体系研究[J]. 地理科学进展, 2020, 39(3): 454-460. |
[6] | 姜凯斯,刘正佳,李裕瑞,王永生,王昱. 黄土丘陵沟壑区典型村域土地利用变化及对区域乡村转型发展的启示[J]. 地理科学进展, 2019, 38(9): 1305-1315. |
[7] | 段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8): 1182-1195. |
[8] | 马明国,汤旭光,韩旭军,时伟宇,宋立生,黄静. 西南岩溶地区碳循环观测与模拟研究进展和展望[J]. 地理科学进展, 2019, 38(8): 1196-1205. |
[9] | 陈颖彪, 郑子豪, 吴志峰, 千庆兰. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019, 38(2): 205-223. |
[10] | 吴其慧, 李畅游, 孙标, 史小红, 赵胜男, 韩知明. 1986—2017年呼伦湖湖冰物候特征变化[J]. 地理科学进展, 2019, 38(12): 1933-1943. |
[11] | 赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018, 37(2): 198-213. |
[12] | 张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37(2): 214-223. |
[13] | 林珲, 张鸿生, 林殷怡, 魏姗, 吴志峰. 基于城市不透水面—人口关联的粤港澳大湾区人口密度时空分异规律与特征[J]. 地理科学进展, 2018, 37(12): 1644-1652. |
[14] | 左秀玲, 苏奋振, 赵焕庭, 方月, 杨娟. 南海珊瑚礁高分辨率遥感地貌分类体系研究[J]. 地理科学进展, 2018, 37(11): 1463-1472. |
[15] | 张震, 刘时银, 魏俊锋, 蒋宗立. 东帕米尔高原昆盖山跃动冰川遥感监测研究[J]. 地理科学进展, 2018, 37(11): 1545-1554. |
|