地理科学进展 ›› 2017, Vol. 36 ›› Issue (8): 1015-1024.doi: 10.18306/dlkxjz.2017.08.010
黄文婕1,2,3(), 葛全胜1, 戴君虎1, 王焕炯1,**(
)
出版日期:
2017-08-31
发布日期:
2017-08-28
通讯作者:
王焕炯
作者简介:
作者简介:黄文婕(1984- ),女,蒙古族,内蒙古赤峰人,博士生,主要从事植被地理和物候学研究,E-mail:
基金资助:
Wenjie HUANG1,2,3(), Quansheng GE1, Junhu DAI1, Huanjiong WANG1,*(
)
Online:
2017-08-31
Published:
2017-08-28
Contact:
Huanjiong WANG
Supported by:
摘要:
植物物候期的温度敏感度反映了植物是怎样及在何种程度上响应气候变化,研究不同物种物候期的温度敏感度有利于鉴别易受气候变化影响的物种。现有关于始花期的温度敏感度研究主要集中在温带地区,在亚热带地区研究仍较少。本文以位于亚热带的贵阳为研究区,利用1980-2014年60种典型木本植物的始花期观测资料,分析了该地区植物始花期变化趋势及对气温变化的敏感度,评估了样本量大小对敏感度估计稳定性的影响。结果表明:①研究时段内贵阳发生了明显的气候变化,年平均气温显著升高,其中春、秋季的增温比夏、冬季显著。②绝大多数植物(88.3%)的始花期在研究时段内呈提前趋势,其中显著提前的占物种总数的21.7%(P<0.05);60种植物始花期总体的提前趋势为2.89 d/10 a。③绝大多数(88.3%)植物始花期的年际变化与最优时段内平均气温呈显著负相关(P<0.05),所有植物始花期的总体敏感度为-5.75 d/℃。④样本量大小对温度敏感度估计的稳定性有显著影响,15年长序列能将敏感度估计结果的波动范围以99%的概率控制在2 d/℃之内。
黄文婕, 葛全胜, 戴君虎, 王焕炯. 贵阳木本植物始花期对温度变化的敏感度[J]. 地理科学进展, 2017, 36(8): 1015-1024.
Wenjie HUANG, Quansheng GE, Junhu DAI, Huanjiong WANG. Sensitivity of first flowering dates to temperature change for typical woody plants in Guiyang City, China[J]. PROGRESS IN GEOGRAPHY, 2017, 36(8): 1015-1024.
表1
本文所采用的物种基本情况"
学名 | 拉丁名 | 科 | 观测年数 | 平均始花期 |
---|---|---|---|---|
侧柏 | Platycladusorientalis | Cupressaceae | 25 | 2-16 |
大叶早樱 | Cerasus subhirtella | Rosaceae | 27 | 2-19 |
金钟花 | Forsythia viridissima | Oleaceae | 26 | 2-19 |
毛叶木瓜 | Chaenomeles cathayensis | Rosaceae | 26 | 2-21 |
榆树 | Ulmuspumila | Ulmaceae | 28 | 2-21 |
澳洲合欢 | Acacia decurrens | Leguminosae | 23 | 2-22 |
杏 | Armeniaca vulgaris | Rosaceae | 28 | 2-28 |
贴梗海棠 | Chaenomelesspeciosa | Rosaceae | 27 | 2-28 |
窄叶蚊母树 | Distylium dunnianum | Hamamelidaceae | 25 | 2-29 |
响叶杨 | Populus adenopoda | Salicaceae | 23 | 3-2 |
垂柳 | Salix babylonica | Salicaceae | 26 | 3-3 |
李 | Prunus salicina | Rosaceae | 23 | 3-7 |
滇杨 | Populus yunnanensis | Salicaceae | 20 | 3-8 |
西府海棠 | Malusmicromalus | Rosaceae | 21 | 3-9 |
沙梨 | Pyruspyrifolia | Rosaceae | 24 | 3-11 |
紫玉兰 | Magnolia liliflora | Magnoliaceae | 22 | 3-12 |
紫荆 | Cercischinensis | Leguminosae | 33 | 3-12 |
木瓜 | Chaenomeles sinensis | Rosaceae | 26 | 3-14 |
枫杨 | Pterocarya stenoptera | Juglandaceae | 27 | 3-15 |
野花椒 | Zanthoxylumsimulans | Rutaceae | 24 | 3-16 |
白花泡桐 | Paulowniafortunei | Scrophulariaceae | 27 | 3-20 |
河柳 | Salix chaenomeloides | Salicaceae | 25 | 3-20 |
白蜡 | Fraxinuschinensis | Oleaceae | 24 | 3-21 |
二球悬铃木 | Platanusacerifolia | Platanaceae | 25 | 3-25 |
麻栎 | Quercus acutissima | Fagaceae | 24 | 3-27 |
东京樱花 | Cerasus yedoensis | Rosaceae | 27 | 3-28 |
马尾松 | Pinus massoniana | Pinaceae | 27 | 3-28 |
紫藤 | Wisteria sinensis | Leguminosae | 22 | 4-3 |
香叶树 | Lindera communis | Lauraceae | 24 | 4-4 |
构树 | Broussonetia papyifera | Moraceae | 25 | 4-4 |
云实 | Caesalpinia decapetala | Leguminosae | 27 | 4-9 |
小叶女贞 | Ligustrum quihoui | Oleaceae | 24 | 4-10 |
刺槐 | Robiniapseudoacacia | Leguminosae | 34 | 4-14 |
猴樟 | Cinnamomum bodinieri | Lauraceae | 23 | 4-14 |
楸树 | Catalpa bungei | Bignoniaceae | 25 | 4-15 |
香樟 | Cinnamomumcamphora | Lauraceae | 22 | 4-15 |
火棘 | Pyracantha fortuneana | Rosaceae | 25 | 4-15 |
楝树 | Meliaazedarach | Meliaceae | 23 | 4-20 |
皂荚 | Gleditsia sinensis | Leguminosae | 25 | 4-22 |
石榴 | Punicagranatum | Punicaceae | 28 | 5-4 |
梓树 | Catalpa ovata | Bignoniaceae | 28 | 5-15 |
线叶冬青 | Ilex fargesiivar.angustifolia | Aquifoliaceae | 23 | 5-18 |
枣树 | Ziziphusjujuba | Rhamnaceae | 26 | 5-20 |
小梾木 | Swida paucinervis | Cornaceae | 26 | 5-21 |
夹竹桃 | Nerium indicum | Apocynaceae | 25 | 5-22 |
华瓜木 | Alangium chinense | Alangiaceae | 21 | 5-27 |
木槿 | Hibiscus syriacus | Malvaceae | 17 | 6-7 |
女贞 | Ligustrumlucidum | Oleaceae | 28 | 6-13 |
六月雪 | Serissa japonica | Rubiaceae | 21 | 6-18 |
乌桕 | Sapium sebiferum | Euphorbiaceae | 24 | 6-19 |
梧桐 | Firmiana simples | Sterculiaceae | 33 | 6-23 |
海州常山 | Clerodendrumtrichotomum | Verbenaceae | 25 | 7-1 |
紫薇 | Lagerstroemia indica | Lythraceae | 27 | 7-12 |
槐树 | Sophora japonica | Leguminosae | 18 | 7-14 |
旱莲木 | Camptothecaacuminata | Nyssaceae | 26 | 7-17 |
白簕 | Acanthopanax trifoliatus | Araliaceae | 16 | 8-2 |
木犀 | Osmanthus fragrans | Oleaceae | 25 | 9-3 |
木芙蓉 | Hibiscus mutabilis | Malvaceae | 29 | 9-6 |
油茶 | Camellia oleifera | Theaceae | 20 | 9-16 |
枇杷 | Eriobotrya japonica | Rosaceae | 16 | 11-3 |
1 |
安静, 张宗田, 刘荣辉, 等. 2014. 贵阳市园林植物种类初步调查[J]. 山地农业生物学报, 33(4): 59-62.
doi: 10.3969/j.issn.1008-0457.2014.04.013 |
[An J, Zhang Z T, Liu R H, et al.2014. Preliminary investigation on landscape greening plants in Guiyang City[J]. Journal of Mountain Agriculture and Biology, 33(4): 59-62.]
doi: 10.3969/j.issn.1008-0457.2014.04.013 |
|
2 |
白洁, 葛全胜, 戴君虎. 2009. 贵阳木本植物物候对气候变化的响应[J]. 地理研究, 28(6): 1606-1614.
doi: 10.11821/yj2009060016 |
[Bai J, Ge Q S, Dai J H.2009.Response of woody plant phenophases to climate change for recent 30 years in Guiyang[J]. Geographical Research, 28(6): 1606-1614.]
doi: 10.11821/yj2009060016 |
|
3 | 范德芹, 赵学胜, 朱文泉, 等. 2016. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 35(3): 304-319. |
[Fan D Q, Zhao X S, Zhu W Q, et al.2016. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Progress in Geography, 35(3): 304-319.] | |
4 |
刘玲玲, 刘良云, 胡勇. 2012. 1982-2006年欧亚大陆植被生长季开始时间遥感监测分析[J]. 地理科学进展, 31(11): 1433-1442.
doi: 10.11820/dlkxjz.2012.11.003 |
[Liu L L, Liu L Y, Hu Y.2012. Assessment and intercomparison of satellite-derived Start-of-Season (SOS) measures in Eurasia for 1982-2006[J]. Progress in Geography, 31(11): 1433-1442.]
doi: 10.11820/dlkxjz.2012.11.003 |
|
5 | 陶泽兴, 仲舒颖, 葛全胜, 等. 2017. 1963-2012年中国主要木本植物花期长度时空变化[J]. 地理学报, 72(1): 53-63. |
[Tao Z X, Zhong S Y, Ge Q S, et al.2017. Spatiotemporal variations in flowering duration of woody plants in China from 1963 to 2012[J]. Acta Geographica Sinica, 72(1): 53-63.] | |
6 | 宛敏渭, 刘秀珍. 1979. 中国物候观测方法[M]. 北京: 科学出版社: 51. |
[Wan M W, Liu X Z.1979. Zhongguo wuhou guance fangfa[M]. Beijing, China: Science Press: 51.] | |
7 | 徐韵佳, 仲舒颖, 戴君虎, 等. 2017. 1978-2014年牡丹江地区植物花期变化及模型模拟[J]. 地理研究, 36(4): 779-789. |
[Xu Y J, Zhong S Y, Dai J H, et al.2017. Changes in flowering phenology of plants and their model simulation in Mudanjiang, China[J]. Geographical Research, 36(4): 779-789.] | |
8 |
仲舒颖, 葛全胜, 郑景云, 等. 2012. 近30年北京自然历的主要物候期、物候季节变化及归因[J]. 植物生态学报, 36(12): 1217-1225.
doi: 10.3724/SP.J.1258.2012.01217 |
[Zhong S Y, Ge Q S, Zheng J Y, et al.2012. Changes of main phenophases of natural calendar and phenological seasons in Beijing for the last 30 years[J]. Chinese Journal of Plant Ecology, 36(12): 1217-1225.]
doi: 10.3724/SP.J.1258.2012.01217 |
|
9 |
Bai J, Ge Q S, Dai J H.2011. The response of first flowering dates to abrupt climate change in Beijing[J]. Advances in Atmospheric Sciences, 28(3): 564-572.
doi: 10.1007/s00376-010-9219-8 |
10 |
Bock A, Sparks T H, Estrella N, et al.2014. Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey[J]. Global Change Biology, 20(11): 3508-3519.
doi: 10.1111/gcb.12579 pmid: 24639048 |
11 |
Bolmgren K, Vanhoenacker D, Miller-Rushing A J.2013.One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates[J]. International Journal of Biometeorology, 57(3): 367-375.
doi: 10.1007/s00484-012-0560-8 pmid: 22744801 |
12 | Chuine I, Morin X, Bugmann H.2010. Warming, photoperiods, and tree phenology[J]. Science, 329: 277-278. |
13 |
Cleland E E, Allen J M, Crimmins T M, et al.2012. Phenological tracking enables positive species responses to climate change[J]. Ecology, 93(8): 1765-1771.
doi: 10.1890/11-1912.1 pmid: 22928404 |
14 |
Cleland E E, Chuine I, Menzel A, et al.2007. Shifting plant phenology in response to global change[J]. Trends in Ecology & Evolution, 22(7): 357-365.
doi: 10.1016/j.tree.2007.04.003 pmid: 17478009 |
15 |
Dai J H, Wang H J, Ge Q S.2013. Multiple phenological responses to climate change among 42 plant species in Xi'an, China[J]. International Journal of Biometeorology, 57(5): 749-758.
doi: 10.1007/s00484-012-0602-2 pmid: 23114575 |
16 |
Dai J H, Wang H J, Ge Q S.2014. The spatial pattern of leaf phenology and its response to climate change in China[J]. International Journal of Biometeorology, 58(4): 521-528.
doi: 10.1007/s00484-013-0679-2 pmid: 23732443 |
17 |
Doi H.2012. Response of the Morusbombycis growing season to temperature and its latitudinal pattern in Japan[J]. International Journal of Biometeorology, 56(5): 895-902.
doi: 10.1007/s00484-011-0495-5 pmid: 21947335 |
18 |
Ellwood E R, Temple S A, Primack R B, et al.2013. Record-breaking early flowering in the eastern United States[J]. PLoS One, 8(1): e53788.
doi: 10.1371/journal.pone.0053788 pmid: 3547064 |
19 |
Fitter A H, Fitter R S R.2002. Rapid changes in flowering time in British plants[J]. Science, 296: 1689-1691.
doi: 10.1126/science.1071617 pmid: 12040195 |
20 |
Ge Q S, Wang H J, Rutishauser T, et al.2015. Phenological response to climate change in China: A meta-analysis[J]. Global Change Biology, 21(1): 265-274.
doi: 10.1111/gcb.12648 pmid: 24895088 |
21 |
Ge Q S, Wang H J, Zheng J Y, et al.2014. A 170 year spring phenology index of plants in Eastern China[J]. Journal of Geophysical Research: Biogeosciences, 119(3): 301-311.
doi: 10.1002/2013JG002565 |
22 |
Gonsamo A, Chen J M, Wu C Y.2013. Citizen Science: Linking the recent rapid advances of plant flowering in Canada with climate variability[J]. Scientific Reports, 3: 2239.
doi: 10.1038/srep02239 pmid: 23867863 |
23 |
Ho C H, Lee E J, Lee I, et al.2006. Earlier spring in Seoul, Korea[J]. International Journal of Climatology, 26(14): 2117-2127.
doi: 10.1002/joc.1356 |
24 | IPCC. 2013. Summary for policymakers[M]//Stocker T F, Qin D, Plattner G K, et al. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press: 3-29. |
25 | Körner C, Basler D.2010. Phenology under global warming[J]. Science, 327: 1461-1462. |
26 |
Li Q X, Liu X N, Zhang H Z, et al.2004. Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data[J]. Advances in Atmospheric Sciences, 21(2): 260-268.
doi: 10.1007/BF02915712 |
27 |
Menzel A, Sparks T H, Estrella N, et al.2006. European phenological response to climate change matches the warming pattern[J]. Global Change Biology, 12(10): 1969-1976.
doi: 10.1111/j.1365-2486.2006.01193.x |
28 |
Miller-Rushing A J, Katsuki T, Primack R B, et al.2007. Impact of global warming on a group of related species and their hybrids: Cherry tree (Rosaceae) flowering at Mt. Takao, Japan[J]. American Journal of Botany, 94(9): 1470-1478.
doi: 10.3732/ajb.94.9.1470 pmid: 21636514 |
29 |
Polgar C A, Primack R B.2011. Leaf-out phenology of temperate woody plants: From trees to ecosystems[J]. New Phytologist, 191(4): 926-941.
doi: 10.1111/j.1469-8137.2011.03803.x pmid: 21762163 |
30 | Rosenzweig C, Casassa G, Karoly D J, et al.2007. Assessment of observed changes and responses in natural and managed systems[M]//Parry M L, Canziani O F, Palutikof J P, et al. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press: 79-131. |
31 | Rosenzweig C, Karoly D, Vicarelli M, et al.2008. Attributing physical and biological impacts to anthropogenic climate change[J]. Nature, 453: 353-357. |
32 |
Rutishauser T, Luterbacher J, Defila C, et al.2008. Swiss spring plant phenology 2007: Extremes, a multi-century perspective, and changes in temperature sensitivity[J]. Geophysical Research Letters, 35(5): L05703.
doi: 10.1029/2007GL032545 |
33 |
Szabó B, Vincze E, Czúcz B.2016. Flowering phenological changes in relation to climate change in Hungary[J]. International Journal of Biometeorology, 60(9): 1347-1356.
doi: 10.1007/s00484-015-1128-1 pmid: 26768142 |
34 | Walther G R, Post E, Convey P, et al.2002. Ecological responses to recent climate change[J]. Nature, 416: 389-395. |
35 |
Wang H J, Dai J H, Zheng J Y, et al.2015. Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850-2009[J]. International Journal of Climatology, 35(6): 913-922.
doi: 10.1002/joc.4026 |
36 |
Wang H J, Ge Q S, Dai J H, et al.2015. Geographical pattern in first bloom variability and its relation to temperature sensitivity in the USA and China[J]. International Journal of Biometeorology, 59(8): 961-969.
doi: 10.1007/s00484-014-0909-2 pmid: 25312515 |
37 |
Wang T, Ottlé C, Peng S S, et al.2014. The influence of local spring temperature variance on temperature sensitivity of spring phenology[J]. Global Change Biology, 20(5): 1473-1480.
doi: 10.1111/gcb.12509 pmid: 24357518 |
38 |
Way D A, Montgomery R A.2015. Photoperiod constraints on tree phenology, performance and migration in a warming world[J]. Plant, Cell & Environment, 38(9): 1725-1736.
doi: 10.1111/pce.12431 pmid: 25142260 |
39 |
Willis C G, Ruhfel B, Primack R B, et al.2008. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(44): 17029-17033.
doi: 10.1073/pnas.0806446105 pmid: 18955707 |
40 |
Willis C G, Ruhfel B R, Primack R B, et al.2010. Favorable climate change response explains non-native species' success in Thoreau's woods[J]. PLoS One, 5(1): e8878.
doi: 10.1371/journal.pone.0008878 pmid: 2811191 |
41 |
Wolfe D W, Schwartz M D, Lakso A N, et al.2005. Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA[J]. International Journal of Biometeorology, 49(5): 303-309.
doi: 10.1007/s00484-004-0248-9 |
42 |
Wolkovich E M, Cook B I, Allen J M, et al.2012. Warming experiments underpredict plant phenological responses to climate change[J]. Nature, 485: 494-497.
doi: 10.1038/nature11014 pmid: 22622576 |
[1] | 邓国富, 李明启. 树轮密度对气候的响应及重建研究进展[J]. 地理科学进展, 2021, 40(2): 343-356. |
[2] | 敖雪, 翟晴飞, 崔妍, 周晓宇, 沈历都, 赵春雨, 宁喜龙. 基于EOF分解的辽宁省城市化气候效应检测[J]. 地理科学进展, 2020, 39(9): 1532-1543. |
[3] | 周美君, 李飞, 邵佳琪, 杨海娟. 气候变化背景下中国玉米生产潜力变化特征[J]. 地理科学进展, 2020, 39(3): 443-453. |
[4] | 宋臻, 史兴民. 雨养农业区农户的气候变化适应行为及影响因素路径分析[J]. 地理科学进展, 2020, 39(3): 461-473. |
[5] | 张学珍, 郑景云, 郝志新. 中国主要经济区的近期气候变化特征评估[J]. 地理科学进展, 2020, 39(10): 1609-1618. |
[6] | 谢正辉, 刘斌, 延晓冬, 孟春雷, 徐宪立, 刘宇, 秦佩华, 贾炳浩, 谢瑾博, 李锐超, 王龙欢, 王妍, 陈思. 应对气候变化的城市规划实施效应评估研究[J]. 地理科学进展, 2020, 39(1): 120-131. |
[7] | 董晓宇, 姚华荣, 戴君虎, 朱梦瑶. 2000—2017年内蒙古荒漠草原植被物候变化及对净初级生产力的影响[J]. 地理科学进展, 2020, 39(1): 24-35. |
[8] | 张湜溪, 戴君虎, 葛全胜. 植物始花期对气候变化响应的激素调控机理研究进展[J]. 地理科学进展, 2019, 38(7): 1045-1055. |
[9] | 方佳毅, 史培军. 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望[J]. 地理科学进展, 2019, 38(5): 625-636. |
[10] | 周玉科. 青藏高原植被NDVI对气候因子响应的格兰杰效应分析[J]. 地理科学进展, 2019, 38(5): 718-730. |
[11] | 张会, 李铖, 程炯, 吴志峰, 吴艳艳. 基于“H-E-V”框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(2): 175-190. |
[12] | 赵彦茜, 肖登攀, 柏会子, 陶福禄. 中国作物物候对气候变化的响应与适应研究进展[J]. 地理科学进展, 2019, 38(2): 224-235. |
[13] | 吴其慧, 李畅游, 孙标, 史小红, 赵胜男, 韩知明. 1986—2017年呼伦湖湖冰物候特征变化[J]. 地理科学进展, 2019, 38(12): 1933-1943. |
[14] | 周玉科. 基于数码照片的植被物候提取多方法比较研究[J]. 地理科学进展, 2018, 37(8): 1031-1044. |
[15] | 萧凌波. 1736-1911年中国水灾多发区分布及空间迁移特征[J]. 地理科学进展, 2018, 37(4): 495-503. |
|