Please wait a minute...
PROGRESS IN GEOGRAPHY
 
引用检索 快速检索 图表检索 高级检索
地理科学进展  2015, Vol. 34 Issue (10): 1297-1305    DOI: 10.18306/dlkxjz.2015.10.010
  模型与遥感应用 本期目录 | 过刊浏览 | 高级检索 |
2001-2010年秦岭森林物候时空变化遥感监测
夏浩铭1,2,李爱农1,*(),赵伟1,边金虎1,2,雷光斌1,2
1. 中国科学院水利部成都山地灾害与环境研究所,成都 610041
2. 中国科学院大学,北京 100049
Spatiotemporal variations of forest phenology in the Qinling zone based on remote sensing monitoring, 2001-2010
XIA Haoming1,2,LI Ainong1,*(),ZHAO Wei1,BIAN Jinhu1,2,LEI Guangbin1,2
1. Institute of Mountain Hazards and Environment, CAS, Chengdu 610041, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(11753 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

植被物候是陆地生态系统对全球气候变化响应的最佳指示器,研究其时空变化对深入理解陆面水热过程、碳循环过程及预测陆地生态系统的时空变化具有重要意义。本文采用2001-2010年MODIS MOD09A1产品,通过引入MOD09A1的时间控制层DOY(Day of Year)提高EVI的时间精度;采用最大变化速率法和阈值法相结合提取秦岭森林物候期。结果表明,随着水热条件变化,由低海拔至高海拔,东南向西北,生长季始期(Start of Growth Season, SOG)逐渐推迟,集中在第81~120 d(即从3月下旬-4月末);生长季末期(End of Growth Season, EOG)逐渐提前,集中在第270~311 d(10月初-11月上旬);生长季长度(Length of Growth Season, LOG)逐渐缩短,集中在150~230 d。秦岭森林物候期与海拔关系密切,海拔每升高100 m,SOG推迟2 d,EOG提前1.9 d,LOG缩短3.9 d。2001-2010年,森林SOG提前、EOG延后和LOG延长主要分布于秦岭中高海拔区;SOG延后、EOG提前和LOG缩短主要分布在海拔1000 m以下部分区域。高海拔区物候的年际变化要比低海拔区复杂,2000 m以上区域SOG提前、EOG提前、LOG缩短。上述研究结果量化了不同海拔梯度森林的物候差异,揭示了近10年秦岭森林物候的时空格局,可为秦岭地区生态环境评价和保护提供科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏浩铭
李爱农
赵伟
边金虎
雷光斌
关键词 EVI时间序列谐波分析物候时空变化秦岭    
Abstract

Plant phenology is one of the most salient and sensitive indicators of terrestrial ecosystem's response to climate change. Understanding its spatiotemporal change is significantly important for understanding both land surface processes and carbon cycle and predicting changes in the terrestrial ecosystem. MODIS MOD09A1, with the spatial resolution of 500 m × 500 m and at an 8-day temporal interval, was used in this study to investigate the change in forest phenology in the Qinling zone of central China in 2001?2010. First, we used the day of year (DOY) of MOD09A1 to improve the temporal precision of EVI; we then combined the maximum ratio and the threshold method for phenology data extraction [start of growth season (SOG), end of growth season (EOG), and length of growth season (LOG)] in the Qinling zone. Results of this study show that: Accompanying the deterioration in heat and water conditions from low altitude to high altitude and southeast to northwest, SOG delayed, EOG advanced, and LOG shortened gradually. SOG and EOG mainly occurred on the 81th?120th and 270th?311th days respectively. LOG was mainly between 150 and 230 days. The phenology of forest in Qinling zone is closely related to altitude, with every 100 m rising in altitude, SOG, EOG, and LOG gradualy delayed 2 days, advanced 1.9 days, and shortened 3.9 days, respectively. From 2001 to 2010, early SOG, late EOG, and extended LOG mainly occurred in medium altitude. SOG, EOG, and LOG gradually delayed, advanced, and shortened respectively in some areas that are lowered than 1,000 m above sea level. Interannual changes at high altitude were more complicated than that at low altitude, and SOG advanced, EOG advanced, and LOG shortened above 2000 m. The reasons for these changes remain unclear. The findings quantified the differences of forest phenology with the change in elevation and revealed the spatiotemporal variations in forest phenology from 2001 to 2010. This article provides a reference for the evaluation and protection of ecological environment in the Qinling zone. In future study, reasons for the above mentioned differences in forest phenology need to be explored.

Key wordsEVI    HANTS    phenology    spatiotemporal variation    Qinling zone
     出版日期: 2015-10-30
基金资助:中国科学院“百人计划”项目(Y1R2130130);四川省“千人计划”项目(Y3D1620620);国家自然科学基金项目(41271433,41401425);中国科学院战略先导性科技专项(XDA05050105);国际合作创新团队项目(KZZD-EW-TZ-06);中国科学院西部之光西部博士资助项目
通讯作者: 李爱农     E-mail: ainongli@imde.ac.cn
引用本文:   
夏浩铭,李爱农,赵伟,边金虎,雷光斌. 2001-2010年秦岭森林物候时空变化遥感监测[J]. 地理科学进展, 2015, 34(10): 1297-1305.
XIA Haoming,LI Ainong,ZHAO Wei,BIAN Jinhu,LEI Guangbin. Spatiotemporal variations of forest phenology in the Qinling zone based on remote sensing monitoring, 2001-2010. PROGRESS IN GEOGRAPHY, 2015, 34(10): 1297-1305.
链接本文:  
http://www.progressingeography.com/CN/10.18306/dlkxjz.2015.10.010      或      http://www.progressingeography.com/CN/Y2015/V34/I10/1297
Fig.1  研究区地理位置和地形图
Fig.2  2009年混交林(a)和落叶阔叶林(b)EVI时序曲线平滑前后对比
Fig.3  秦岭森林物候期多年均值的空间分布;DOY为日序
Fig.4  2001-2010年秦岭森林物候始期、末期及生长季长度均值与海拔之间的关系
Fig.5  2001-2010年秦岭森林物候期年际变化趋势图
1 白红英, 马新萍, 高翔, 等. 2012. 基于DEM的秦岭山地1月气温及0℃等温线变化[J]. 地理学报, 67(11): 1443-1450.
1 [Bai H Y, Ma X P, Gao X, et al.2012. Variations in January temperature and 0℃ isothermal curve in Qinling Mountains based on DEM[J]. Acta Geographica Sinica, 67(11): 1443-1450.]
2 陈效逑, 韩建伟. 2008. 我国东部温带植物群落的季相及其时空变化特征[J]. 植物生态学报, 32(2): 336-346.
2 [Chen X Q, Han J W.2008. Seasonal aspect stages of plant communities and its spatial-temporal variation in temperate eastern China[J]. Journal of Plant Ecology, 32(2): 336-346.]
3 陈效逑, 王林海. 2009. 遥感物候学研究进展[J]. 地理科学进展, 28(1): 33-40.
3 [Chen X Q, Wang L H.2009. Progress in remote sensing phenological research[J]. Progress in Geography, 28(1): 33-40.]
4 丁明军, 张镱锂, 孙晓敏, 等. 2012. 近10年青藏高原高寒草地物候时空变化特征分析[J]. 科学通报, 57(33): 3185-3194.
4 [Ding M J, Zhang Y L, Sun X M, et al.2012. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009[J]. Chinese Science Bulletin, 58(3): 396-405.]
5 方修琦, 余卫红. 2002. 物候对全球变暖响应的研究综述[J]. 地球科学进展, 17(5): 714-719.
5 [Fang X Q, Yu W H.2002. Progress in the studies on the phenological responding to global warming[J]. Advances in Earth Science, 17(5): 714-719.]
6 高翔, 白红英, 张善红, 等. 2012. 1959-2009年秦岭山地气候变化趋势研究[J]. 水土保持通报, 32(1): 207-211.
6 [ Gao X, Bai H Y, Zhang S H, et al.2012. Climatic change tendency in Qinling Mountains from 1959 to 2009[J]. Bulletin of Soil and Water Conservation, 32(1): 207-211]
7 贺映娜. 2012. 秦岭植被物候期及遥感生长季的变化研究[D]. 西安: 西北大学.
7 [He Y N.2012. Research on the variatition of vegetation phenology in Qinling Moutain base on Remote Sensing and in situ obersation[D]. Xi'an, China: Northwest University.]
8 侯学会, 牛铮, 高帅, 等. 2013. 基于SPOT-VGT NDVI 时间序列的农牧交错带植被物候监测[J]. 农业工程学报, 29(1): 142-150.
8 [Hou X H, Niu Z, Gao S, et al.2013. Monitoring vegetation phenology in farming-pastoral zone using SPOT-VGT NDVI data[J]. Transactions of the Chinese Society of Agricultural Engineering, 29(1): 142-150.]
9 侯学会, 牛铮, 高帅. 2014. 近十年中国东北森林植被物候遥感监测[J]. 光谱学与光谱分析, 34(2): 515-519.
9 [ Hou X H, Niu Z, Gao S.2014. Phenology of forest vegetation in northeast of China in ten years using remote sensing[J]. Spectroscopy and Spectral Analysis, 34(2): 515-519.]
10 蒋冲, 穆兴民, 马文勇, 等. 2015. 秦岭南北地区绝对湿度的时空变化及其与潜在蒸发量的关系[J]. 生态学报, 35(2): 378-388.
10 [Jiang C, Mu X M, Ma W Y, et al.2015. Spatial and temporal variation of absolute humidity and its relationship with potential evaporation in the northern and southern regions of Qinling Mountains[J]. Acta Ecologica Sinica, 35(2): 378-388.]
11 李淑娟, 刘雅莉. 2013. 西安主要季色叶植物观赏特征及物候图谱研究初报[J]. 西北林学院学报, 28(2): 42-47.
11 [Li S J, Liu Y L.2013. Ornamental characteristics and phenograms of plant leaf color in the main seasons in Xi'an[J]. Journal of Northwest Forestry University, 28(2): 42-47.]
12 刘玲玲, 刘良云, 胡勇. 2012. 1982-2006年欧亚大陆植被生长季开始时间遥感监测分析[J]. 地理科学进展, 31(11): 1433-1442.
12 [Liu L L, Liu L Y, Hu Y.2012. Assessment and intercomparison of satellite-derived start-of season (SOG) measures in Eurasia for 1982-2006[J]. Progress in Geography, 31(11): 1433-1442.]
13 宋春桥, 游松财, 柯灵红, 等. 2012. 藏北高原典型植被样区物候变化及其对气候变化的响应[J]. 生态学报, 32(4): 1045-1055.
13 [Song C Q, You S C, Ke L H, et al.2012. Phenological variation of typical vegetation types in northern Tibet and its response to climate changes[J]. Acta Ecologica Sinica, 32(4): 1045-1055.]
14 王宏, 李晓兵, 莺歌, 等. 2006. 基于NOAA NDVI 的植被生长季模拟方法研究[J]. 地理科学进展, 25(6): 21-32.
14 [Wang H, Li X B, Ying G, et al.2006. The methods of simulating vegetation growing season based on NOAA NDVI[J]. Progress in Geography, 25(6): 21-32.]
15 于信芳, 庄大方. 2006. 基于MODIS NDVI 数据的东北森林物候期监测[J]. 资源科学, 28(4): 111-117.
15 [Yu X F, Zhuang D F.2006. Monitoring forest phenophases of northeast China based on MODIS NDVI data[J]. Resources Science, 28(4): 111-117.]
16 张殷波, 郭柳琳, 王伟, 等. 2014. 秦岭重点保护植物丰富度空间格局与热点地区[J]. 生态学报, 34(8): 2109-2117.
16 [Zhang Y B, Guo L L, Wang W, et al.2014. Spatial distribution patterns of species richness and hotspots of protected plants in Qinling Mountain[J]. Acta Ecologica Sinica, 34(8): 2109-2117.]
17 周旗, 卞娟娟, 郑景云. 2011. 秦岭南北1951-2009年的气温与热量资源变化[J]. 地理学报, 66(9): 1211-1218.
17 [Zhou Q, Bian J J, Zheng J Y.2011. Variation of air temperature and thermal resources in northern and southern regions of the Qinling Mountains from 1951 to 2009[J]. Acta Geographica Sinica, 66(9): 1211-1218.]
18 朱晓勤, 刘康, 秦耀民. 2006. 基于GIS的秦岭山地植被类型与环境梯度的关系分析[J]. 水体保持学报, 20(5): 192-196.
18 [Zhu X Q, Liu K, Qin Y M.2006. GIS-based study of vegetation-environment gradient relationship in Qinling Mountain[J]. Journal of Soil and Water Conservation, 20(5): 192-196.]
19 竺可桢, 宛敏渭. 1973. 物候学[M]. 北京: 科学出版社. [Zhu K Z, Wan M W. 1973. Phenology[M]. Beijing, China: Science Press.]
20 Duchemin B, Goubier J, Courrier G.1999. Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data[J]. Remote Sensing of Environment, 67(1): 68-82.
21 Eleonora R, Akihoko K, Ketut W, et al.2001. NDVI-derived length of the growth period estimations for different vegetation types in Monsoon Asia[J]. IECI Chapter Japan Series, 3: 106-109.
22 Høgda K A, Tømmervik H, Karlsen S R.2013. Trends in the start of the growing season in fennoscandia 1982-2011[J]. Remote Sensing, 5(9): 4304-4318.
23 Huete A, Didan K, Miura T, et al.2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 83(1-2): 195-213.
24 Jin C, Xiao X M, Merbold L, et al.2013. Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa[J]. Remote Sensing of Environment, 135: 189-201.
25 Jonsson P, Eklundh L.2002. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1824-1832.
26 Moulin S, Kergoat L, Viovy N, et al.1997. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements[J]. Journal of Climate, 10(6): 1154-1170.
27 Myneni R B, Keeling C D, Tucker C J, et al.1997. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 386: 698-702.
28 Peñuelas J, Filella I.2001. Responses to a warming world[J]. Science, 294: 793-795.
29 Piao S L, Fang J Y, Zhou L M, et al.2006. Variations in satellite-derived phenology in China's temperate vegetation[J]. Global Change Biology, 12(4): 672-685.
30 Roerink G J, Menenti M, Verhoef W.2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing, 21(9): 1911-1917.
31 Schwartz M D.2003. Phenology: an integrative environmental science[M]. Kluwer, Netherlands: Springer.
32 White M A, de Beurs K M, Didan K, et al.2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006[J]. Global Change Biology, 15(10): 2335-2359.
33 White M A, Hoffman F, Hargrove W W, et al.2005. A global framework for monitoring phenological responses to climate change[J]. Geophysical Research Letters, 32(4): L04705.
[1] 李双双,杨赛霓,刘宪锋. 1960-2013年秦岭—淮河南北极端降水时空变化特征及其影响因素[J]. 地理科学进展, 2015, 34(3): 354-363.
[2] 廖谌婳, 封志明, 李鹏, 张景华. 中南半岛森林覆被变化研究进展[J]. 地理科学进展, 2014, 33(6): 853-864.
[3] 张晓峰, 王宏志, 刘洛, 徐新良. 近50年来气候变化背景下中国大豆生产潜力时空演变特征[J]. 地理科学进展, 2014, 33(10): 1414-1423.
[4] 王喜, 秦耀辰, 鲁丰先, 张黛, 姜向亚. 黄河中下游地区主要省份低碳经济发展水平的时空差异研究[J]. 地理科学进展, 2013, 32(4): 505-513.
[5] 韩玮, 韩永红, 杨沈斌. 1961-2011年山东气候资源及气候生产力时空变化特征[J]. 地理科学进展, 2013, 32(3): 425-434.
[6] 蒋冲, 朱枫, 杨陈, 王飞, 穆兴民, 李锐. 秦岭南北地区光合有效辐射时空变化及突变特征[J]. 地理科学进展, 2013, 32(3): 435-446.
[7] 罗海江. 基于卫星遥感的北京城乡植物物候差异[J]. 地理科学进展, 2013, 32(10): 1463-1469.
[8] 许民, 叶柏生, 赵求东. 2002-2010年长江流域GRACE水储量时空变化特征[J]. 地理科学进展, 2013, 32(1): 68-77.
[9] 刘宪锋, 任志远, 张翀, 林志慧. 1959-2008 年黄土高原地区年内降水集中度和集中期时空变化特征[J]. 地理科学进展, 2012, 31(9): 1157-1163.
[10] 乔木, 周生斌, 卢磊, 闫俊杰, 宋鹏, 徐薇薇. 新疆渭干河流域土壤盐渍化时空变化及成因分析[J]. 地理科学进展, 2012, 31(7): 904-910.
[11] 李伟伟, 杨永春, 赵四东. 中国外资利用效率测评及其时空变化研究[J]. 地理科学进展, 2012, 31(6): 733-741.
[12] 马宗义, 颉耀文, 余林, 赵虹, 高桥, 钱富. 单一景观类型时空变化分析方法——以酒泉盆地绿洲化为例[J]. 地理科学进展, 2012, 31(12): 1732-1738.
[13] 刘玲玲, 刘良云, 胡勇. 1982-2006 年欧亚大陆植被生长季开始时间遥感监测分析[J]. 地理科学进展, 2012, 31(11): 1433-1442.
[14] 张帅, 陶福禄. 水稻发育期模型研究进展[J]. 地理科学进展, 2012, 31(11): 1485-1491.
[15] 刘莉红, 翟盘茂, 郑祖光, 刘晓玲. 中国北方夏半年干旱的时空变化[J]. 地理科学进展, 2011, 30(11): 1380-1386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 地理科学进展
技术支持: 北京玛格泰克科技发展有限公司