Please wait a minute...
PROGRESS IN GEOGRAPHY
 
引用检索 快速检索 图表检索 高级检索
地理科学进展  2015, Vol. 34 Issue (2): 197-206    DOI: 10.11820/dlkxjz.2015.02.008
  农村发展与土地利用 本期目录 | 过刊浏览 | 高级检索 |
过去百年青海和西藏耕地空间格局重建及其时空变化
李士成1,2,3,张镱锂1,2,何凡能1
1.中国科学院地理科学与资源研究所,陆地表层格局与模拟重点实验室,北京100101;
2.中国科学院青藏高原地球科学卓越创新中心,北京100101;
3.中国科学院大学,北京100049
Reconstruction of cropland distribution in Qinghai and Tibet for the past one hundred years and its spatiotemporal changes
LI Shicheng1, 2, 3, ZHANG Yili1, 2, HE Fanneng1
1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
2. Chinese Academy of Sciences Center for Excellence & Innovation in Tibetan Plateau Earth System Sciences, Beijing 100101, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(10641 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 网格化的历史土地利用/覆被数据集,可为历史气候变化和碳循环研究提供基础数据。本文估算了1910年,并订正了1950-2000年青海和西藏的省域耕地面积数据;基于现代耕地空间格局,量化了海拔高程和地面坡度与耕地空间分布之间的关系,构建了历史耕地网格化重建模型。将1910、1960、1980和2000年的省域耕地面积数据带入网格化重建模型,得到了4个时间断面的耕地空间格局。结果表明:青藏两省耕地面积1910-1950年稳定,1950-1980年快速增加,1980-2000年基本稳定,略有降低。就空间格局而言,1960-1980年,河湟谷地和“一江两河”地区土地开垦范围的扩张和垦殖强度的增长在过去百年最为明显。模型检验表明,模型重建的2000年耕地空间格局与2000年遥感数据相关系数达0.92。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李士成
何凡能
张镱锂
关键词 耕地估算与订正过去百年青海和西藏网格化重建    
Abstract:Since numerical simulation has become a popular method for studying the effects of land use and land cover change on climate and environment, spatially explicit historical cropland datasets are increasingly required in regional and global climate change and carbon cycle research. In this study, using historical population data as a proxy, we estimated the provincial cropland area of Qinghai and Tibet in 1910. Based on the statistical data of the National Bureau of Statistics of China, the survey data of the Ministry of Land and Resources, and the results of some previous studies, we revised the cropland area of Qinghai and Tibet in 1950-2000. The relationship between altitude and surface slope and cropland distribution were quantified to develop the spatially explicit reconstruction model of historical cropland at a resolution of 1 km×1 km. Since the cropland area reached the maximum in the 1980s, the satellite-observed cropland distribution extent of this time period was taken as the maximum distribution extent of historical cropland. The model developed in this research was used to reconstruct the spatial patterns of cropland in Qinghai and Tibet in 1910, 1960, 1980, and 2000. The reconstruction results show that: (1) in 1910-1950, cropland area of Qinghai-Tibet was stable, while in 1950-1980 cropland area increased rapidly, reaching 10583 km2, which is the maximum of the entire study period; in 1980-1990, cropland area decreased slightly; and in 1990-2000, cropland area increased slightly; (2) with regard to its spatial distribution, in 1910-1960, cropland expanded and land use activities intensified greatly in the Yellow River-Huangshui River Valley (YHV); in 1960-1980, cropland expansion and land use intensification occurred in the YHV, the Yarlung Zangbo River, the Nianchu River, and the Lhasa River valleys; in 1980-2000, the spatial pattern of cropland in Qinghai and Tibet remained unchanged. By comparing the reconstruction results of this study for 2000 with satellite-observed cropland distribution of the same year, we found that the correlation coefficient was 0.92 and the absolute difference followed normal distribution. The percentage of grid cells where the absolute difference is low (-10% to 10%) reached 73.29%, while the percentage of grid cells where the absolute difference is high (>40% or <-40%) was 1.94%. Incorporating more information on historical population and cropland of Qinghai and Tibet will help improve the accuracy of our reconstruction modeling. The reconstruction results of this research can be used in regional climate models to study the impact of cropland cover change on the climate and carbon cycle.
Key wordscropland    estimation and revision    past one hundred years    Qinghai and Tibet    spatially explicit reconstruction
     出版日期: 2015-03-24
基金资助:中国科学院战略性先导科技专项(XDB03030500); 国家自然科学基金项目(41371120,41271227)
通讯作者: 张镱锂(1962-),男,吉林人,研究员,博士生导师,主要从事综合自然地理/生物地理和土地变化研究,E-mail: zhangyl@igsnrr.ac.cn。   
作者简介: 李士成(1989-),男,山东费县人,博士生,主要从事土地利用与土地覆被变化研究,E-mail: lisc.10s@igsnrr.ac.cn。
引用本文:   
李士成, 张镱锂, 何凡能. 过去百年青海和西藏耕地空间格局重建及其时空变化[J]. 地理科学进展, 2015, 34(2): 197-206.
LI Shicheng, ZHANG Yili, HE Fanneng. Reconstruction of cropland distribution in Qinghai and Tibet for the past one hundred years and its spatiotemporal changes. PROGRESS IN GEOGRAPHY, 2015, 34(2): 197-206.
链接本文:  
http://www.progressingeography.com/CN/10.11820/dlkxjz.2015.02.008      或      http://www.progressingeography.com/CN/Y2015/V34/I2/197
1 曹树基. 2001. 中国人口史(第五卷): 清时期[M]. 上海: 复旦大学出版社. [Cao S J. 2001. Zhongguo renkoushi (diwujuan): Qing shiqi[M]. Shanghai, China: Fudan University Press.]
2 曹雪, 金晓斌, 王金朔, 等. 2014. 近300年中国耕地数据集重建与耕地变化分析[J]. 地理学报, 69(7): 896-906. [Cao X, Jin X B, Wang J S, et al. 2014. Reconstruction and change analysis of cropland data of China in recent 300 years[J]. Acta Geographica Sinica, 69(7): 896-906.]
3 封志明, 刘宝勤, 杨艳昭. 2005. 中国耕地资源数量变化的趋势分析与数据重建: 1949-2003[J]. 自然资源学报, 20 (1): 35-43. [Feng Z M, Liu B Q, Yang Y Z. 2005. A study of the changing trend of Chinese cultivated land amount and data reconstructing: 1949-2003[J]. Journal of Natural Resources, 20(1): 35-43.]
4 何凡能, 李士成, 张学珍. 2014. 清代西南地区森林空间格局网格化重建[J]. 地理研究, 33(2): 260-269. [He F N, Li S C, Zhang X Z. 2014. Spatially explicit reconstruction of forest cover of southwest China in the Qing Dynasty[J]. Geographical Research, 33(2): 260-269.]
5 罗静, 张镱锂, 刘峰贵, 等. 2014. 青藏高原东北部河湟谷地1726年耕地格局重建[J]. 地理研究, 33(7): 95-106. [Luo J, Zhang Y L, Liu F G, et al. 2014. Reconstruction of cropland spatial patterns for 1726 on Yellow River-Huangshui River Valley in northeast Qinghai-Tibet Plateau[J]. Geographical Research, 33(7): 95-106.]
6 李士成, 何凡能, 陈屹松. 2012. 清代西南地区耕地空间格局网格化重建[J]. 地理科学进展, 31(9): 1196-1203. [Li S C, He F N, Chen Y S. 2012. Gridding reconstruction of cropland spatial patterns in southwest China in the Qing Dynasty[J]. Progress in Geography, 31(9): 1196-1203.]
7 李秀彬. 1996. 全球环境变化研究的核心领域: 土地利用/土地覆被变化的国际研究动向[J]. 地理学报, 51(6): 553-558. [Li X B. 1996. A review of the international researches on land use/land cover change[J]. Acta Geographica Sinica, 51(6): 553-558.]
8 谭其骧. 1987. 中国历史地图集: 清时期[M]. 北京: 中国地图出版社. [Tan Q X. 1987. The historical atlas of China: the Qing Dynasty period[M]. Beijing, China: SinoMaps Press.]
9 张镱锂, 李炳元, 郑度. 2002. 论青藏高原范围与面积[J]. 地理研究, 21(1): 1-8. [Zhang Y L, Li B Y, Zheng D. 2002. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 21(1): 1-8.]
10 中华人民共和国国家统计局. 2009. 中国统计年鉴[M]. 北京: 中国统计出版社. [Natural bureau of statistics of China. 2009. China statistical yearbook[M]. Beijing, China: China Statistics Press.]
11 朱枫, 崔雪锋, 缪丽娟. 2012. 中国历史时期土地利用数据集的重建方法述评[J]. 地理科学进展, 31(12): 1563-1573. [Zhu F, Cui X F, Miao L J. 2012. China's spatially-explicit historical land-use data and its reconstruction methodology[J]. Progress in Geography, 31(12): 1563-1573.]
12 Brovkin V, Sitch S, Von B W, et al. 2004. Role of land cover changes for atmospheric CO 2 increase and climate change during the last 150 years[J]. Global Change Biology, 10(8): 1253-1266.
13 Crook F. 1993. Underreporting of China's cultivated land area: implications for world agricultural trade[R]. China International Agricultural and Trade Report: 33-39.
14 Ellis E C, Kaplan J O, Fuller D Q, et al. 2013. Used planet: a global history[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(20): 7978-7985.
15 Foley J A, DeFries R, Asner G P, et al. 2005. Global consequences of land use[J]. Science, 309: 570-574.
16 Frolking S, Qiu J J, Boles S, et al. 2002. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China[J]. Global Biogeochemical Cycles, 16(4): 1091.
17 Ge Q S, Dai J H, He F N, et al. 2008. Land use changes and their relations with carbon cycles over the past 300a in China[J]. Science in China: Earth Sciences, 51(6): 871-884.
18 He F, Vavrus Steve J, Kutzbach J E, et al. 2014. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change[J]. Geophysical Research Letters, 41(2): 623-631.
19 He F N, Ge Q S, Dai J H, et al. 2008. Forest change of China in recent 300 years[J]. Journal of Geographical Sciences, 18(1): 59-72.
20 He F N, Li S C, Zhang X Z, et al. 2013. Comparisons of cropland area from multiple datasets over the past 300 years in the traditional cultivated region of China[J]. Journal of Geographical Sciences, 23(6): 978-990.
21 Kaplan J O, Krumhardt K M, Zimmermann N. 2009. The prehistoric and preindustrial deforestation of Europe[J]. Quaternary Science Reviews, 28(27-28): 3016-3034.
22 Klein Goldewijk K, Beusen A, Van Drecht G, et al. 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12000 years[J]. Global Ecology and Biogeography, 20(1): 73-86.
23 Leite C C, Costa M H, Soares-Filho B S, et al. 2012. Historical land use change and associated carbon emissions in Brazil from 1940 to 1995[J]. Global Biogeochemical Cycles, 26: GB2011.
24 Li B B, Fang X Q, Ye Y, et al. 2010. Accuracy assessment of global historical cropland datasets based on regional reconstructed historical data-a case study in northeast China[J]. Science in China: Earth Sciences, 53(11): 1689-1699.
25 Li S C, He F N, Zhang X Z. 2015. A spatially explicit reconstruction of cropland cover in China from 1661 to 1996[J]. Regional Environmental Change. doi:10.1007/s10113-014-0751-4.
26 Lin S S, Zheng J Y, He F N. 2009. Gridding cropland data reconstruction over the agricultural region of China in 1820[J]. Journal of Geographical Sciences, 19(1): 36-48.
27 Liu M L, Tian H Q. 2010. China's land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives[J]. Global Biogeochemical Cycles, 24: GB3003.
28 Meiyappan P, Dalton M, O'Neill B C, et al. 2014. Spatial modeling of agricultural land use change at global scale[J]. Ecological Modelling, 291: 152-174.
29 Miao L J, Zhu F, He B, et al. 2013. Synthesis of China's land use in the past 300 years[J]. Global and Planetary Change, 100: 224-233.
30 Pitman A J, Avila F B, Abramowitz G, et al. 2011. Importance of background climate in determining impact of land-cover change on regional climate[J]. Nature Climate Change, 1(9): 472-475.
31 Pongratz J, Reick C, Raddatz T, et al. 2008. A reconstruction of global agricultural areas and land cover for the last millennium[J]. Global Biogeochemical Cycles, 22(3): GB3018.
32 Ramankutty N. 2011. Global cropland and pasture data from 1700-2007[DB/OL]. 2011-07-13[2014-08-15]. http://www.geog.mcgill.ca/landuse/pub/Data/Histlanduse/.
33 Ramankutty N, Foley J A. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992[J]. Global Biogeochemical Cycles, 13(4): 997-1027.
34 Thompson Robert S. 2000. Biome 300: understanding the impacts of human activities on land cover over the past 300 years[J]. IGBP Newsletter, 43: 2-3.
35 Tian H Q, Banger K, Bo T, et al. 2014. History of land use in India during 1880-2010: large-scale land transformations reconstructed from satellite data and historical archives[J]. Global and Planetary Change, 121: 78-88.
36 Zhang X Z, He F N, Li S C. 2013. Reconstructed cropland in the mid-eleventh century in the traditional agricultural area of China: implications of comparisons among datasets[J]. Regional Environmental Change, 13(5): 969-977.
37 Zhang Y L, Li B Y, Zheng D. 2014. Datasets of the boundary and area of the Tibetan Plateau[DB/OL]. 2014-06-01[2014-07-30]. http://geodoi.ac.cn/WebCn/doi.aspx?Id=135.
[1] 罗静, 陈琼, 刘峰贵, 张镱锂, 周强. 青藏高原河谷地区历史时期耕地格局重建方法探讨——以河湟谷地为例[J]. 地理科学进展, 2015, 34(2): 207-216.
[2] 李美娇, 何凡能, 肖冉. 中美巴印过去300年耕地时空变化的比较研究[J]. 地理科学进展, 2015, 34(1): 64-72.
[3] 冯永恒, 张时煌, 何凡能, 周兆媛. 20世纪中国耕地格网化数据分区重建[J]. 地理科学进展, 2014, 33(11): 1546-1555.
[4] 何威风, 阎建忠, 周洪. 重庆市山区农户耕地转入特征及其影响因素[J]. 地理科学进展, 2014, 33(11): 1566-1576.
[5] 杨忍, 刘彦随, 郭丽英, 李玉恒. 环渤海地区农村空心化程度与耕地利用集约度的时空变化及其耦合关系[J]. 地理科学进展, 2013, 32(2): 181-190.
[6] 李士成, 何凡能, 陈屹松. 清代西南地区耕地空间格局网格化重建[J]. 地理科学进展, 2012, 31(9): 1196-1203.
[7] 宋小青, 欧阳竹. 耕地多功能内涵及其对耕地保护的启示[J]. 地理科学进展, 2012, 31(7): 859-868.
[8] 吴文婕, 石培基, 胡巍. 干旱区绿洲城市化发展与耕地保护协同性分析——以张掖市甘州区为例[J]. 地理科学进展, 2011, 30(5): 621-626.
[9] 李广东, 邱道持, 王平. 中国耕地保护机制建设研究进展[J]. 地理科学进展, 2011, 30(3): 282-289.
[10] 宋伟, 陈百明, 史文娇, 吴建寨. 2007 年中国耕地资源安全评价[J]. 地理科学进展, 2011, 30(11): 1449-1455.
[11] 孔祥斌,李翠珍,梁颖,王洪雨. 基于农户用地行为的耕地生产力及隐性损失研究[J]. 地理科学进展, 2010, 29(7): 869-877.
[12] 杨波, 徐勇. 黄土高原坡耕地苜蓿产量及水土流失地形分异模拟——以延安燕沟流域为例[J]. 地理科学进展, 2010, 29(5): 530-534.
[13] 冯雪力1,2|吴世新1|陈红1,2|张良侠1,2. 新疆非耕地系数相似性类型区划分[J]. 地理科学进展, 2010, 29(3): 301-306.
[14] 陈红1,2|吴世新1|冯雪力1,2. 新疆耕地时空变化特征[J]. 地理科学进展, 2010, 29(3): 312-318.
[15] 柯新利, 邓祥征, 刘成武. 基于分区异步元胞自动机模型的耕地利用布局优化——以武汉城市圈为例[J]. 地理科学进展, 2010, 29(11): 1442-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 地理科学进展
技术支持: 北京玛格泰克科技发展有限公司