[1] |
邓毛颖, 谢理. 2000. 广州市居民出行特征分析及交通发展的对策. 城市规划, 24(11): 45-49.
|
|
Deng M Y, Xie L.2000. The characteristics of the trips of the local residents and the transport policy in GuangZhou. City Planning, 24(11): 45-49.
|
[2] |
关美宝, 郭文伯, 柴彦威. 2013. 人类移动性与健康研究中的时间问题. 地理科学进展, 32(9): 1344-1351.
|
|
Kwan M P, Guo W B, Chai Y W.2013. Temporally integrated human mobility and health research. Progress In Geography, 32(9): 1344-1351.
|
[3] |
桂智明, 向宇, 李玉鉴. 2012. 基于出租车轨迹的并行城市热点区域发现. 华中科技大学学报: 自然科学版, 40(S1): 187-190.
|
|
Gui Z M, Xiang Y, Li Y J.2012. Parallel discovering of city hot spot based on taxi trajectories. Journal of Huazhong University of Science and Technology: Natural Science Edition, 40(S1):187-190.
|
[4] |
黄潇婷, 马修军. 2011. 基于GPS数据的旅游者活动节奏研究. 旅游学刊, 26(12): 26-29.
|
|
Huang X T, Ma X J.2012. Study on tourists' rhythm of activities based on GPS data. Tourism Tribune. 26(12): 26-29.
|
[5] |
龙瀛, 张宇, 崔承印. 2012. 利用公交刷卡数据分析北京职住关系和通勤出行. 地理学报, 67(10): 1339-1352.
|
|
Long Y, Zhang Y, Cui C Y.2012. Identifying commuting pattern of Beijing using bus smart card data. Acta Geographica Sinica, 67(10): 1339-1352.
|
[6] |
罗典, 甘勇华. 2010. 城市空间发展对居民出行特征的影响研究: 以广州为例. 交通与运输: 学术版, 1: 11-14.
|
|
Luo D, Gan Y H.2010. Study about impact of urban area development on residents' travel characteristic: a case research on Guangzhou City. Traffic and Transportation, 1: 11-14.
|
[7] |
马静, 柴彦威, 张文佳. 2009. 北京市居民购物出行影响因素的空间分异. 经济地理, 29(12): 2006-2011.
|
|
Ma J, Chai Y W, Zhang W J.2009. A study on shopping behavior of Beijing residents: the spatial differentiation of influencing facors. Economic Geography, 29(12): 2006-2011.
|
[8] |
齐观德, 潘遥, 李石坚, 等. 2013. 基于出租车轨迹数据挖掘的乘客候车时间预测. 软件学报, 24(S2): 14-23.
|
|
Qi G D, Pan Y, Li S J, et al.2013. Predicting passengers' waiting time by mining taxi traces. Journal of Software, 24(S2): 14-23.
|
[9] |
秦萧, 甄峰, 熊丽芳, 等. 2013. 大数据时代城市时空间行为研究方法. 地理科学进展, 32(9): 1352-1361.
|
|
Qin X, Zhen F, Xiong L F, et al.2013. Methods in urban temporal and spatial behavior research in the Big Data Era. Progress in Geography, 32(9): 1352-1361.
|
[10] |
曲大义, 于仲臣, 庄劲松, 等. 2001. 苏州市居民出行特征分析及交通发展对策研究. 东南大学学报, 31(3): 118-123.
|
|
Qu D Y, Yu Z C, Zhuang J S, et al.2001. Analysis on the resident trip characteristics and study on the transport development policies in Suzhou. Journal of Southeast University, 31(3): 118-123.
|
[11] |
申悦, 柴彦威. 2013. 基于GPS数据的北京市郊区巨型社区居民日常活动空间. 地理学报, 68(4): 506-516.
|
|
Shen Y, Chai Y W.2013. Daily activity space of suburban mega-community residents in Beijing based on GPS data. Acta Geographica Sinica, 68(4): 506-516.
|
[12] |
隋正伟, 邬伦, 刘瑜. 2013. 基于签到数据的城市间交互网络研究. 地理与地理信息科学, 29(6): 1-5.
|
|
Sui Z W, Wu L, Liu Y.2013. Study on interactive network among Chinese cities based on the check-in dataset. Geography and Geo-Information Science, 29(6): 1-5.
|
[13] |
童晓君, 向南平, 朱定局. 2012. 基于出租车GPS数据的城市居民出行行为分析. 电脑与电信, 1: 56-59.
|
|
Tong X J, Xiang N P, Zhu D J.2012. The analysis of city dweller's travel choice behavior based on taxi GPS trajectory data. Computer & Telecommunication, 1: 56-59.
|
[14] |
Ahas R, Aasa A, Mark Ü, et al.2007. Seasonal tourism spaces in Estonia: case study with mobile positioning data. Tourism Management, 28(3): 898-910.
|
[15] |
Ahas R, Silm S, Järv O, et al.2010. Using mobile positioning data to model locations meaningful to users of mobile phones. Journal of Urban Technology, 17(1): 3-27.
|
[16] |
Barria J A, Thajchayapong S.2011. Detection and classification of traffic anomalies using microscopic traffic variables. IEEE Transactions on Intelligent Transportation Systems, 12(3): 695-704.
|
[17] |
Calabrese F, Di Lorenzo G, Liu L, et al.2011. Estimating origin-destination flows using mobile phone location data. IEEE Pervasive Computing, 10(4): 36-44.
|
[18] |
Calabrese F, Diao M, Di Lorenzo G, et al.2013. Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26: 301-313.
|
[19] |
Calabrese F, Pereira F C, Di Lorenzo G, et al.2010. The geography of taste: analyzing cell-phone mobility and social events//Floreen P, Kruger A, Spasojevic M. Pervasive computing. Berlin, Germany: Springer: 22-37.
|
[20] |
Calabrese F, Ratti C, Colonna M, et al.2011. Real-time urban monitoring using cell phones: a case study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1): 141-151.
|
[21] |
Camargo S J, Robertson A W, Gaffney S J, et al.2004. Cluster analysis of western North Pacific tropical cyclone tracks. The 26th conference on hurricanes and tropical meteorology. Miami, FL, May 3-7, 2004.
|
[22] |
Cho E, Wong K, Gnawali O, et al.2011. Inferring mobile trajectories using a network of binary proximity sensors. The 8th annual IEEE communications society conference on Sensor, mesh and ad hoc communications and networks (SECON). Salt Lake, UT, June 27-30, 2011.
|
[23] |
De F C, Roberto R, Gaetano V.2008. Traffic estimation and prediction based on real time floating car data//IEEE. Proceedings of the 11th international IEEE conference on intelligent transportation systems. New York, NY: IEEE: 197-203.
|
[24] |
Demetra V C, Joy S, Lee G.2003. The 2001 national household travel survey: a look into the travel patterns of older Americans. Journal of Safety Research, 34(4): 461-470.
|
[25] |
Di Lorenzo G, Reades J, Calabrese F, et al.2012. Predicting personal mobility with individual and group travel histories. Environment and Planning B, 39(5): 838.
|
[26] |
Fang Z, Li Q, Li Q, et al.2013. A space-time efficiency model for optimizing intra-intersection vehicle-pedestrian evacuation movements. Transportation Research C: Emerging Technologies, 31: 112-130.
|
[27] |
Gao S, Liu Y, Wang Y, et al.2013. Discovering spatial interaction communities from mobile phone data. Transactions in GIS, 17: 463-481.
|
[28] |
García R C, López L P, Urios V.2010. First description of migration and wintering of adult Egyptian Vultures Neophron percnopterus tracked by GPS satellite telemetry. Bird Study, 57(2): 261-265.
|
[29] |
Gelernter J, Balaji S.2013. An algorithm for local geoparsing of microtext. GeoInformatica, 17(4): 635-667.
|
[30] |
Gelernter J, Mushegian N.2011. Geo-parsing messages from microtext. Transactions in GIS, 15(6): 753-773.
|
[31] |
Giannotti F, Nanni M, Pinelli F, et al.2007. Trajectory pattern mining. The 13th ACM SIGKDD international conference on knowledge discovery and data mining. San Jose, CA, August 12-15, 2007.
|
[32] |
Golledge R G, Stimson R J.1997. Spatial behavior: a geographic perspective. New York, NY: Guilford Press.
|
[33] |
Gonzalez M C, Hidalgo C A, Barabasi A L.2008. Understanding individual human mobility patterns. Nature, 453(7196): 779-782.
|
[34] |
Guo D.2007. Visual analytics of spatial interaction patterns for pandemic decision support. International Journal of Geographical Information Science, 21(8): 859-877.
|
[35] |
Guo D.2009. Flow mapping and multivariate visualization of large spatial interaction data. IEEE Transactions on Visualization and Computer Graphics, 15(6): 1041-1048.
|
[36] |
Guo D, Liu S, Jin H.2010. A graph-based approach to vehicle trajectory analysis. Journal of Location Based Services, 4(3-4): 183-199.
|
[37] |
Guo D, Zhu X, Jin H, et al.2012. Discovering spatial patterns in origin-destination mobility data. Transactions in GIS, 16(3): 411-429.
|
[38] |
Hu J, Cao W, Luo J, et al.2009. Dynamic modeling of urban population travel behavior based on data fusion of mobile phone positioning data and FCD//Di L, Chen A. 17th international conference on geoinformatics. New York, NY: IEEE: 207-211.
|
[39] |
Kang C, Gao S, Lin X, et al.2010. Analyzing and geo-visualizing individual human mobility patterns using mobile call records//Liu Y, Chen A. The 18th international conference on geoinformatics. Beijing, China: IEEE: 1-7.
|
[40] |
Kang C, Stanislav S, Liu Y, et al.2013. Exploring human movements in Singapore: a comparative analysis based on mobile phone and taxicab usages. The 19th ACM SIGKDD international conference on knowledge discovery and data mining. Chicago, IL, August 11, 2013.
|
[41] |
Kanoulas E, Du Y, Xia T, et al.2006. Finding fastest paths on a road network with speed patterns. The 22nd international conference on data engineering. Atlanta, GA, April 3-7, 2006.
|
[42] |
Kwan M P.1999. Gender and individual access to urban opportunities: a study using space-time measure. The Professional Geographer, 51(2): 210-227.
|
[43] |
Kwan M P, Lee J.2003. Geovisualization of human activity patterns using 3D GIS: a time-geographic approach//Goodchild M F, Janelle D G. Spatially integrated social science. examples in best practice. Oxford, UK: Oxford University Press: 48-66.
|
[44] |
Lee J G, Han J, Whang K Y.2007. Trajectory clustering: a partition-and-group framework. ACM SIGMOD International conference on management of data. Beijing, China, June 12-14, 2007.
|
[45] |
Li X, Han J, Kim S, et al.2007. Roam: Rule-and motif-based anomaly detection in massive moving object data sets//Apte C, Liu B, Parthasarathy S, et al. Proceedings of the seventh siam international conference on data mining. Philadelphia, PA: Siam: 273-284.
|
[46] |
Liu L, Andris C, Ratti C.2010. Uncovering cabdrivers' behavior patterns from their digital traces. Computers, Environment and Urban Systems, 34(6): 541-548.
|
[47] |
Liu Y, Sui Z, Kang C, et al.2014. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PloS One, 9(1): e86026.
|
[48] |
Marchettini N, Pulselli R M, Tiezzi E B P.2010. An innovative survey of urban systems dynamics: the evidence of the MoTo project//Brebbia C A, Hernandez S, Tiezzi E. The sustainable city VI: urban regeneration and sustainability, 129: 97.
|
[49] |
Nanni M.2002. Clustering methods for spatio-temporal data. Pisa, Italy: University of Pisa.
|
[50] |
Pan G, Qi G, Wu Z, et al.2013. Land-use classification using taxi GPS traces. IEEE Transactions on Intelligent Transportation Systems, 14(1): 113-123.
|
[51] |
Pang L X, Chawla S, Liu W, et al.2011. On mining anomalous patterns in road traffic streams//Tang J, King I, Chen L, et al. Advanced data mining and applications. Berlin, Germany: Springer: 237-251.
|
[52] |
Pei T, Gong X, Shaw S L, et al.2013. Clustering of temporal event processes. International Journal of Geographical Information Science, 27(3): 484-510.
|
[53] |
Pei T, Sobolevsky S, Ratti C, et al.2014. A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science, doi: 10.1080/13658816.2014.913794.
|
[54] |
Phithakkitnukoon S, Horanont T, Di Lorenzo G, et al.2010. Activity-aware map: iIdentifying human daily activity pattern using mobile phone data//Salah A A, Gevers T, Sebe N, et al. Human Behavior Understanding. Berlin, Germany: Springer: 14-25.
|
[55] |
Pindolia D K, Garcia A J, Wesolowski A, et al.2012. Human movement data for malaria control and elimination strategic planning. Malaria Journal, 11(1): 205.
|
[56] |
Pulselli R M, Pulselli F M, Ratti C, et al.2005. Dynamics and evolution of urban patterns: the evidence of the mobile landscape project//Tiezzi E, Brebbia C A, Jorgensen S E, et al. Ecosystems and sustainable development V. Ashurst, UK: Wit Press: 597-603
|
[57] |
Qi G Q, Wu J P, Du Y M.2013. Research on the traffic simulation platform based on the real-time mobile phone data. Applied Mechanics and Materials, 253: 1365-1368.
|
[58] |
Ratti C, Williams S, Frenchman D, et al.2006. Mobile landscapes: using location data from cell phones for urban analysis. Environment and Planning B, 33(5): 727-748.
|
[59] |
Ratti C.2007. Mobile landscape: graz in real time. Lecture Notes in Geoinformation and Cartography, 5: 433-444.
|
[60] |
Rekimoto J, Miyaki T, Ishizawa T.2007. LifeTag: WiFi-based continuous location logging for life pattern analysis//Hightower J, Schiele B, Strang T. Location and context-awareness. Berlin, Germany: Springer: 35-49.
|
[61] |
Sevtsuk A, Ratti C.2010. Does urban mobility have a daily routine: learning from the aggregate data of mobile networks. Journal of Urban Technology, 17(1): 41-60.
|
[62] |
Simini F, González M C, Maritan A, et al.2012. A universal model for mobility and migration patterns. Nature, 484(7392): 96-100.
|
[63] |
Song C, Qu Z, Blumm N, et al.2010. Limits of predictability in human mobility. Science, 327(5968): 1018-1021.
|
[64] |
Sun L, Lee D H, Erath A, et al.2012. Using smart card data to extract passenger's spatio-temporal density and train's trajectory of MRT system. International workshop on urban computing, urbcomp 2012-held in conjunction with KDD 2012. Beijing, China: August 12, 2012.
|
[65] |
Tu W, Fang Z, Li Q.2010. Exploring time varying shortest path of urban OD Pairs based on floating car data//Liu Y, Chen A. 2010. 18th international conference on geoinformatics. New York, NY: IEEE: 1-6.
|
[66] |
Veloso M, Phithakkitnukoon S, Bento C.2011. Urban mobility study using taxi traces. 2011. International workshop on trajectory data mining and analysis. Beijing, China: September 18, 2011.
|
[67] |
Wang G, Su J, Chu P C.2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121.
|
[68] |
Yuan J, Zheng Y, Xie X.2012. Discovering regions of different functions in a city using human mobility and POIs. The 18th ACM SIGKDD International conference on knowledge discovery and data mining. Beijing, China: August 12-16, 2012.
|
[69] |
Yuan Y, Raubal M.2013. Measuring similarity of mobile phone user trajectories: a spatiotemporal edit distance method. International Journal of Geographical Information Science, doi: 10.1080/13658816.2013.8543 69.
|
[70] |
Yuan Y, Raubal M, Liu Y.2011. Correlating mobile phone usage and travel behavior: a case study of Harbin, China. Computers, Environment and Urban Systems. 36(2): 118-130.
|
[71] |
Zhang D, Li N, Zhou Z H, et al.2011. iBAT: detecting anomalous taxi trajectories from GPS traces. The 13th international conference on ubiquitous computing. Beijing, China: September 17-21, 2011.
|
[72] |
Zhang W, Li S, Pan G.2012. Mining the semantics of origin-destination flows using taxi traces. The 14th international conference on ubiquitous computing. Pittsburgh, United States: September 5-8, 2012.
|
[73] |
Zhao N, Huang W, Song G, et al.2011. Discrete trajectory prediction on mobile data//Du X Y, Fan W F, Wang JM, et al. Web technologies and applications. Berlin, Germany: Springer: 77-88.
|
[74] |
Zheng Y, Xie X.2010. Learning location correlation from gps trajectories. The 11th IEEE international conference on mobile data management. Kansas City, MO, May 23-26, 2010.
|