地理科学进展 ›› 2014, Vol. 33 ›› Issue (8): 1090-1100.doi: 10.11820/dlkxjz.2014.08.009
江净超1,2(), 朱阿兴1,3(
), 秦承志1, 刘军志4, 陈腊娇5, 吴辉1,2
出版日期:
2014-08-25
发布日期:
2014-08-25
作者简介:
作者简介:江净超(1986-),男,河北邢台人,博士生,主要研究方向为Web GIS和地学智能建模,E-mail:
基金资助:
Jingchao JIANG1,2(), A-Xing ZHU1,3(
), Chengzhi QIN1, Junzhi LIU4, Lajiao CHEN5, Hui WU1,2
Online:
2014-08-25
Published:
2014-08-25
摘要:
分布式水文模型软件系统作为分布式水文模型的技术外壳,是模型应用的重要技术保障。当前分布式水文模型应用呈现出多过程综合模拟、用户群范围广和计算量大的特点,对分布式水文模型软件系统的灵活性、易用性和高效性提出了更高的要求。本文首先分析了分布式水文模型应用的主要流程,之后从应用视角对现有分布式水文模型软件系统的特点进行了归纳,主要结论为:①软件系统按照模型结构灵活性的高低分为以下3种类型:不支持子过程选择和算法设置,不支持子过程选择、但支持算法设置,同时支持子过程选择和算法设置;②根据用户操作数据预处理软件方式的不同,参数提取方式分为菜单/命令行式和向导式;③按照模型的程序实现方法分为串行和并行方式,按照模型运行环境分为本地和网络模式。现有软件系统在灵活性、易用性和高效性方面存在如下问题:一是尚未解决模型结构灵活性和对用户知识依赖性之间的矛盾;二是现有菜单/命令行式和向导式的参数提取方式步骤繁琐,难以实现参数的自动提取;三是模型大多为串行方式和本地模式,容易遇到计算瓶颈问题。最后从模块化、智能化、网络化及移动化、并行化和虚拟仿真等方面探讨了分布式水文模型软件系统的发展趋势和研究方向。
中图分类号:
江净超, 朱阿兴, 秦承志, 刘军志, 陈腊娇, 吴辉. 分布式水文模型软件系统研究综述[J]. 地理科学进展, 2014, 33(8): 1090-1100.
Jingchao JIANG, A-Xing ZHU, Chengzhi QIN, Junzhi LIU, Lajiao CHEN, Hui WU. Review on distributed hydrological modelling software systems[J]. PROGRESS IN GEOGRAPHY, 2014, 33(8): 1090-1100.
表1
几种典型分布式水文模型软件系统的特点总结"
分布式水文模型软件系统 | 灵活性 | 易用性 | 高效性 | ||||
---|---|---|---|---|---|---|---|
子过程选择 | 算法选择 | 参数提取方式 | 串/并行方式 | 计算模式 | |||
DHSVM( | 不支持 | 支持 | 菜单/命令行 | 串行 | 本地 | ||
MIKESHE( | 支持 | 支持 | 向导 | 串行 | 本地 | ||
HIMS( | 支持 | 支持 | 向导 | 串行 | 本地 | ||
OpenMI( | 支持 | 支持 | 菜单/命令行 | 串行 | 本地 | ||
ArcSWAT( | 不支持 | 支持 | 向导 | 串行 | 本地 | ||
EasyDHM( | 支持 | 支持 | 向导 | 串行/并行 | 本地 | ||
OMS( | 支持 | 支持 | 菜单/命令行 | 串行/并行 | 本地 | ||
P-SWAT( | 不支持 | 支持 | 向导 | 并行 | 本地 | ||
SEIM( | 支持 | 支持 | 菜单/命令行 | 并行 | 网络 |
[1] | 陈坰烽, 张万昌, 吴波. 2008. 多目标遗传单纯形算法在概念性水文模型参数优化中的应用. 水土保持通报, 28(3): 107-112. |
Chen J F, Zhang W C, Wu B.2008. Multi objective calibration with predictive uncertainty analysis for conceptual hydrological models. Bulletin of Soil and Water Conservation, 28(3): 107-112. | |
[2] | 陈腊娇, 朱阿兴, 秦承志, 等. 2011. 流域生态水文模型研究进展. 地理科学进展, 30(5): 535-544. |
Chen L J, Zhu A X, Qin C Z, et al.2011. Review of eco-hydrological models of watershed scale. Progress in Geography, 30(5): 535-544. | |
[3] | 江净超, 朱阿兴, 秦承志, 等. 2013. CyberSoLIM: 基于知识驱动的在线数字土壤制图原型系统. 土壤学报, 50(6): 1216-1220. |
Jiang J C, Zhu A-X, Qin C Z, et al.2013. CyberSoLIM: knowledge-driven on-line digital soil mapping. Acta Pedologica Sinica, 50(6): 1216-1220. | |
[4] | 雷晓辉, 蒋云钟, 王浩. 2010. 分布式水文模型EasyDHM. 北京: 中国水利水电出版社. |
Lei X H, Jiang Y Z, Wang H.2010. Distributed hydrological model EasyDHM. Beijing: China WaterPower Press. | |
[5] | 刘军志.2013. 分布式水文模型的子流域—基本单元双层并行计算方法[D]. 北京: 中国科学院地理科学与资源研究所. |
Liu J Z.2013. Dual-layer parallelization for distributed hydrologic model at both subbasin and basic unit level[D]. Beijing, China: Insititue of Geographic Sciences and Natural Resources Research, CAS. | |
[6] | 刘军志, 朱阿兴, 秦承志, 等. 2013. 分布式水文模型的并行计算研究进展. 地理科学进展, 32(4): 538-547. |
Liu J Z, Zhu A-X, Qin C Z, et al.2013. Review on parallel computing of distributed hydrological models. Progress in Geography, 32(4): 538-547. | |
[7] | 刘苏宁, 甘泓, 魏国孝. 2010. 粒子群算法在新安江模型参数率定中的应用. 水利学报, 41(5): 537-544. |
Liu S N, Gan H, Wei G X.2010. Application of PSO algorithm to calibrate the Xin'anjiang Hydrological Model. Journal of Hydraulic Engineering, 41(5): 537-544. | |
[8] | 刘志雨.2005. ArcTOP: TOPKAPI与GIS紧密连接的分布式水文模型系统. 水文, 25(4): 18-22. |
Liu Z Y.2005. ArcTOP: a distributed hydrological modeling system of tight coupling TOPKAPI with GIS. Hydrology, 25(4): 18-22. | |
[9] | 陆垂裕, 秦大庸, 张俊娥, 等. 2012. 面向对象模块化的分布式式水文模型MODCYCLE I: 模型原理与开发篇. 水利学报, 43(10): 1135-1145. |
Lu C Y, Qin D Y, Zhang J E, et al.2012. MODCYCLE-an object oriented modularized hydrological mode I: theory and development. ShuiLi XueBao, 43(10): 1135-1145. | |
[10] | 秦承志, 卢岩君, 包黎莉, 等. 2009. 简化数字地形分析软件(SimDTA)及其应用: 以嫩江流域鹤山农场的坡位模糊分类应用为例. 地球信息科学学报, 11(6): 737-743. |
Qin C Z, Lu Y J, Bao L L, et al.2009. Simple digital terrain analysis software (SimDTA 1.0) and its application in fuzzy classification of slope positions. Geo-Information Science, 11(6): 737-743. | |
[11] | 芮孝芳, 黄国如. 2004. 分布式水文模型的现状与未来. 水利水电科技进展, 24(2): 55-58. |
Rui X F, Huang G R.2004. Current situation of distributed hydrological model and its future development. Advances in Science and Technology of Water Resources, 24(2): 55-58. | |
[12] | 沈冰, 王文焰. 1992. 降雨条件下黄土坡地表层土壤水分运动实验与数值模拟的研究. 水利学报, 6: 29-35. |
Shen B, Wang W Y.1992. Jiangyu tiaojianxia huangtu podi biaoceng turang shuifen yundong shiyan yu shuzhi moni de yanjiu. ShuiLi XueBao, 6: 29-35. | |
[13] | 王建平, 程声通. 2005. 遗传单纯形混合算法在复杂环境模型参数识别中的应用. 水利学报, 36(6): 674-679. |
Wang J P, Cheng S T.2005. Application of genetic algorithm and simplex method in parameter identification of complicated environmental model. ShuiLi XueBao, 36(6): 674-679. | |
[14] | 王书功, 康尔泗, 李新. 2004. 分布式水文模型的进展及展望.冰川冻土, 26(1): 61-65. |
Wang S G, Kang E S, Li X.2004. Progress and perspective of distributued hydrological models. Journal of Glaciology and Geocryology, 26(1): 61-65. | |
[15] | 王宇晖, 雷晓辉, 蒋云钟. 2010. 基于MOSCEM-UA算法的水文模型参数优化. 人民长江, 41(19): 95-99. |
Wang Y H, Lei X H, Jiang Y Z.2010. Parameter calibration of hymod hydrological model using MOSCEM-UA algorithm. Yangtze River, 41(19): 95-99. | |
[16] | 王中根, 郑红星, 刘昌明. 2005. 基于模块的分布式水文模拟系统及其应用. 地理科学进展, 24(6): 109-115. |
Wang Z G, Zheng H X, Liu C M.2005. A modular framework of distributed hydrological modeling system: hydroInformatic modeling system, HIMS. Progress in Geography, 24(6): 109-115. | |
[17] | 熊立华, 郭生练. 2004. 分布式流域水文模型. 北京: 中国水利水电出版社. |
Xiong L H, Guo S L.2004. Distributed watershed hydrological models. Beijing, China: WaterPower PressChina WaterPower Press. | |
[18] | 徐宗学, 程磊. 2010. 分布式水文模型研究与应用进展. 水利学报, 41(9): 1009-1017. |
Xu Z X, Cheng L.2010. Progress on studies and applications of the distributed hydrological models. ShuiLi XueBao, 41(9): 1009-1017. | |
[19] | 詹道江, 叶守泽. 2000. 工程水文学. 北京: 中国水利水电出版社. |
Zhan D J, Ye S Z.2000. Engineering hydrology. Beijing, China: WaterPower Press China WaterPower Press. | |
[20] | 张寅生, 姚檀栋, 蒲健辰, 等. 1997. 青藏高原唐古拉山冬克玛底河流域水文过程特征分析. 冰川冻土, 19(3): 214-222. |
Zhang Y S, Yao T D, Pu J C, et al.1997. The features of hydrological processes in the Dongkemadi River Basin, Tanggula Pass, Tibetan Plateau. Journal of Glaciology and Geocryology, 19(3): 214-222. | |
[21] | 朱阿兴, 陈腊娇, 秦承志, 等. 2012. 水土流失治理新范式: 基于流域过程模拟和情景分析的方法. 应用生态学报, 23(7): 1883-1890. |
Zhu A-X, Chen L J, Qin C Z, et al.2012. New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis. Chinese Journal of Applied Ecology, 23(7): 1883-1890. | |
[22] | Adam M, Belhouchette H, Corbeels M, et al.2012. Protocol to support model selection and evaluation in a modular crop modelling framework: an application for simulating crop response to nitrogen supply. Computers and Electronics in Agriculture, 86: 43-54. |
[23] | Ames D P, Horsburgh J S, Cao Y, et al.2012. HydroDesktop: web services-based software for hydrologic data discovery, download, visualtion, and analysis. Enviromental Modelling & Software, 37: 146-156. |
[24] | Arnold T R.2013. Procedural knowledge for integrated modelling: towards the modelling playground. Environmental Modelling & Software, 39: 135-148. |
[25] | Ascough J C II, David O, Krause P, et al.2012. Development and application of a modular watershed-scale hydrologic model using the object modeling system: runoff response evaluation. Transactions of the ASABE, 55(1): 117-135. |
[26] | Bah. ARC/EGMO [EB/OL]. 2013-04-12 [2013-08-22]. |
[27] | Beven K J, Kirkby M J.1979. A physically based variable contributing area model of basin hydrology. Hydrological Science Bulletin, 24(1): 43-69. |
[28] | Borah D K, Bera M.2004. Watershed-scale hydrologic and nonpoint-source pollution models: review of applications. Transactions of the ASAE, 47(3): 789-803. |
[29] | Boyle D P, Gupta H V, Sorooshian S.2000. Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resources Research, 36(12): 3363-3674. |
[30] | Brigham Young University. WMS 7.1 Tutorials [EB/OL]. 2005-03-28 [2013-08-02]. |
[31] | Castronova A M, Goodall J L, Elag M M.2013. Models as web services using the Open Geospatial Consortium (OGC) Web Processing Service (WPS) standard. Environmental Modelling & Software, 41: 72-83. |
[32] | Chau K W, Chuntian C, Li C W.2002. Knowledge management system on flow and water quality modeling. Expert Systems with Applications, 22(4): 321-330. |
[33] | Cheng C T, Zhao M Y, Chau K W, et al.2006. Using genetic algorithm and TOPSIS for Xin'anjiang model calibration with a single procedure. Journal of Hydrology, 316(1-4): 129-140. |
[34] | Deb K, Pratap A, Agarwal S, et al.2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2): 182-197. |
[35] | Di L M, Srinivasan R, Arnold J G.2004. A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Transactions in GIS, 8(1): 113-136. |
[36] | Duan Q Y, Sorooshian S, Gupta V K.1994. Optimal use of SCE-UA global optimization methods for calibrating watershed models. Journal of Hydrology, 158(3-4): 265-284. |
[37] | Goodall J L, Saint K D, Ercan M B, et al.2013. Coupling climate and hydrological models: interoperability through web services. Environmental Modelling & Software, 46: 250-259. |
[38] | Graham D N, Butts M B.2005. Flexible integrated watershed modelling with MIKE SHE//Singh V P, Frevert D K. Watershed models. Boca Raton, FL: CRC Press: 245-272. |
[39] | Grimaldi S, Petroselli A, Romano N.2013. Green-Ampt curve-number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins. Hydrological Processes, 27(8): 1253-1264. |
[40] | Grimshaw D J.2001. Harnessing the power of geographical knowledge: the potential for data integration in an SME. International Journal of Information Management, 21(3): 183-191. |
[41] | Han W G, Di L P, Zhao P S, et al.2012. DEM explorer: an online in-teroperable DEM data sharing and analysis system. Environmental Modelling & Software, 38: 101-107. |
[42] | Hargreaves G H, Samani Z A.1985. Reference crop evapotranspiration from temperatrue. Applied Engineering in Agriculture, 1(2): 96-99. |
[43] | Huang B, Jiang B.2002. AVTOP: a full integration of TOPMODEL into GIS. Environmental Modelling & Software, 17(3): 261-268. |
[44] | Horak J, Orlik A, Stromsky J.2008. Web services for distributed and interoperable hydro-information systems. Hydrology and Earth System Sciences, 12: 635-644. |
[45] | Leavesley G H, Markstrom S L, Restrepo P J, et al.2002. A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modelling. Hydrological Processes, 16(2): 173-187. |
[46] | Lei X H, Wang Y H, Liao W H, et al.2011. Development of efficient and cost-effective distributed hydrological modeling tool MWEasyDHM based on open-source MapWindow GIS. Computer & Geosciences, 37(9): 1476-1489. |
[47] | Li T J, Wang G Q, Chen J.2010. A modified binary tree codification of drainage networks to support complex hydrological models. Computers & Geosciences, 36(11): 1427-1435. |
[48] | Li T J, Wang G Q, Xue H, et al.2009. Soil erosion and sediment transport in the gullied Loess Plateau: scale effects and their mechanisms. Science in China: Technological Sciences, 52(5): 1283-1292. |
[49] | Li T J, Wang G Q, Chen J, et al.2011. Dynamic parallelization of hydrological model simulations. Environmental Modelling & Software, 26(12): 1736-1746. |
[50] | Liu Y B, De Smedt F. 2004. WetSpa extension, a GIS-based hydrologic model for flood prediction and watershed management[EB/OL]. 2004-04[2013-08-22]. |
[51] | Liu Z Y, Todini E.2002. Towards a comprehensive physically-based Rainfall-Rainoff model. Hydrology and Earth System Sciences, 6(5): 859-881. |
[52] | Lu Y J, Qin C Z, Zhu A X, et al.2012. Application-matching knowledge based engine for a modelling environment for digital terrain analysis.GeoInformatics 2012. Hong Kong, China: June 15-17. |
[53] | McCloud D E.1955. Water requirements of field crops in Florida as influenced by climate. Proceedings Soil and Crop Science Society of Florida, 15: 165-172. |
[54] | Merwade V, Cook A, Coonrod J.2008. GIS techniques for creating river terrain models for hydrodynamic modelling and flood inundation mapping. Environmental Modelling & Software, 23(10-11): 1300-1311. |
[55] | Minacapilli M, Iovino M, D'Urso G.2008. A distributed agro-hydrological model for irrigation water demand assessment. Agricultural Water Mangement, 95(2): 123-132. |
[56] | Moore R V, Tindall C.2005. An overview of the open modelling interface and enviroment (the OpenMI). Environmental Science & Policy, 8(3): 279-286. |
[57] | Qin C Z, Jiang J C, Zhan L J, et al.2013. A browser/server-based prototype of heuristic modelling environment for digital terrain analysis. Geomorphometry 2013, Nanjing, China: October 15-20. |
[58] | Rivix. Introduction to RiverTools 3.0[EB/OL]. 2013-04-16[2013-08-023]. |
[59] | Tesfa T K, Tarboton D G, Waston D W, et al.2011. Extraction of hydrological proximity measures from DEMs using parallel processing. Environmental Modelling & Software, 26(12): 1696-1709. |
[60] | Thornthwaite C W.1948. An approach toward a rational classification of climate. Geographic Review, 38(1): 55-94. |
[61] | Thyer M, Kuczera G, Bates B C.1999. Probabilistic optimization for conceptual rainfall-runoff models: a comparison of the shuffled complex evolution and simulated annealing algorithms. Water Resources Research, 35(3): 767-773. |
[62] | US Army Corps of Engineers Hydrologicl Engineeing Center. Hydrologic modeling system HEC-HMS[EB/OL]. 2010-08[2013-08-26]. |
[63] | USG. 2013. MODFLOW-GUI version 4[EB/OL]. 2013-11-29[2013-12-26]. |
[64] | Vivoni E R, Mascaro G, Mniszewski S, et al.2011. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment. Journal of Hydrology, 409(1-2): 483-496. |
[65] | Wang G Q, Wu B S, Li T J.2007. Digital Yellow River model. Journal of Hydro-Environment Research, 1(1): 1-11. |
[66] | Wang H, Fu X D, Wang G Q, et al.2011. A common parallel computing framework for modeling hydrological processes of river basins. Parallel Computing, 37(6-7): 302-315. |
[67] | Wigmosta M S, Vail L W, Lettenmaier D P.1994. A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30(6): 1665-1679. |
[68] | Winchell M, Srinivasan R, Di L M, et al. 2008. ArcSWAT 2.0 interface for SWAT2005 [EB/OL]. 2008-02[2013-08-22]. |
[69] | Wu Y P, Li T J, Sun L Q, et al.2013. Parallelization of a hydrological model using the message passing interface. Environmental Modelling & Software, 43: 124-132. |
[70] | Yang W H, Liu Y B, Shen H L. 2011. Evaluation of multiple best management practices in fairchild creek watershed[EB/OL]. 2011-11-07[2013-08-26]. |
[71] | Zhang S H, Xia Z X, Wang T W, et al.2013. A real-time interactive simulation framework for watershed decision making using numerical models and virtual environment. Journal of Hydrology, 493: 95-104. |
[72] | Zhang W M, Dong Z C, Zhu C T, et al.2008. Automatic calibration of hydrologic model based on multi-objective particle swarm optimi-zation method. Journal of Hydraulic Engineering, 39(5): 528-534. |
[73] | Zhao P S, Di L P, Yu G N, et al.2009. Semantic web-based geospatial knowledge transformation. Computers & Geosciences, 35(4): 798-808. |
[1] | 薛岚. 国外乡村舒适性研究综述与启示[J]. 地理科学进展, 2020, 39(12): 2129-2138. |
[2] | 赵瑞东, 方创琳, 刘海猛. 城市韧性研究进展与展望[J]. 地理科学进展, 2020, 39(10): 1717-1731. |
[3] | 郭禹含, 王中根, 伍玉良. 多源再分析降水数据在拉萨河流域应用对比研究[J]. 地理科学进展, 2017, 36(8): 1033-1039. |
[4] | 王晓蕾, 孙林, 张宜清, 罗毅. 中亚阿姆河上游产流过程特征研究[J]. 地理科学进展, 2015, 34(3): 364-372. |
[5] | 王慧芳, 周恺. 2003-2013年中国城市形态研究评述[J]. 地理科学进展, 2014, 33(5): 689-701. |
[6] | 闫梅, 黄金川. 国内外城市空间扩展研究评析[J]. 地理科学进展, 2013, 32(7): 1039-1050. |
[7] | 唐承财, 钟林生, 成升魁. 旅游地可持续发展研究综述[J]. 地理科学进展, 2013, 32(6): 984-992. |
[8] | 刘军志, 朱阿兴, 秦承志, 陈腊娇, 吴辉, 江净超. 分布式水文模型的并行计算研究进展[J]. 地理科学进展, 2013, 32(4): 538-547. |
[9] | 宋涛, 蔡建明, 倪攀, 杜姗姗, 丁悦. 城市新陈代谢研究综述及展望[J]. 地理科学进展, 2013, 32(11): 1650-1661. |
[10] | 朱大运, 王建力. 青藏高原冰芯重建古气候研究进展分析[J]. 地理科学进展, 2013, 32(10): 1535-1544. |
[11] | 赵斯思, 周成虎. GPU加速的多边形叠加分析[J]. 地理科学进展, 2013, 32(1): 114-120. |
[12] | 杨建明. 全球气候变化对旅游业发展影响研究综述[J]. 地理科学进展, 2010, 29(8): 997-1004. |
[13] | 吴丰林,方创琳,赵雅萍. 城市产业集聚动力机制与模式研究进展[J]. 地理科学进展, 2010, 29(10): 1201-1208. |
[14] | 王中根,朱新军,夏军,李建新. 海河流域分布式SWAT模型的构建[J]. 地理科学进展, 2008, 27(4): 1-6. |
[15] | 张奇. 湖泊集水域地表—地下径流联合模拟[J]. 地理科学进展, 2007, 26(5): 1-10. |
|