地理科学进展 ›› 2014, Vol. 33 ›› Issue (8): 1058-1067.doi: 10.11820/dlkxjz.2014.08.006
出版日期:
2014-08-25
发布日期:
2014-08-25
作者简介:
作者简介:陈彦光(1965-),男,河南罗山人,博士,教授,主要从事城市地理学、理论地理学以及计量地理学研究,E-mail:
基金资助:
Online:
2014-08-25
Published:
2014-08-25
摘要:
城市人口规模和用地面积随着时间的改变过程理论上服从异速生长定律,即在一定时空范围内表现为幂指数关系,并且标度指数小于1。但由于种种原因,中国的统计数据大多不满足纵向异速标度关系,或者标度指数严重异常。为深入研究这一问题,借助最小二乘法和对数线性回归分析技术,基于信阳的人口普查数据和城市用地现状图资料,开展城市人口和城市用地面积的标度分析,发现城市生长长期服从纵向异速生长定律,可用幂函数描绘,并且标度指数(约为0.86)接近于理论预期值(0.85)。然而,由于近年的“造城运动”,这种标度关系遭到破坏,城市人—地关系出现混乱。因此,揭示城市演化规律的前提是数据质量的保证,而人文系统的规律也会因为人为的因素而暂时破坏。本文提供了一个城市纵向异速生长及其标度破坏的简明案例,并给出了估计和预测信阳城市人口和用地的数学模型,其计算结果可以作为了解同类城市人—地关系的演化进程和未来趋势的重要参考。
中图分类号:
陈彦光, 张莉. 信阳城市人口—城区用地异速生长分析[J]. 地理科学进展, 2014, 33(8): 1058-1067.
Yanguang CHEN, Li ZHANG. An allometric analysis of the scaling relations between population and urban area of Xinyang[J]. PROGRESS IN GEOGRAPHY, 2014, 33(8): 1058-1067.
表2
信阳城市人口和城市建设用地面积估计值和预测值"
年份 n | 时序 t | 人口规模Pt /万人 | 建设用地面积At /km2 | |||
---|---|---|---|---|---|---|
Logistic预测值 | Logistic预测 | 二次logistic预测 | 异速生长预测1 | 异速生长预测2 | ||
1949 | 0 | 3.76 | 4.63 | 6.14 | 4.70 | 4.30 |
1950 | 1 | 3.94 | 4.82 | 6.14 | 4.89 | 4.50 |
1951 | 2 | 4.12 | 5.02 | 6.15 | 5.09 | 4.70 |
1952 | 3 | 4.32 | 5.23 | 6.17 | 5.30 | 4.91 |
1953 | 4 | 4.53 | 5.44 | 6.21 | 5.52 | 5.14 |
1954 | 5 | 4.74 | 5.67 | 6.24 | 5.74 | 5.37 |
1955 | 6 | 4.97 | 5.90 | 6.29 | 5.98 | 5.61 |
1956 | 7 | 5.21 | 6.15 | 6.35 | 6.22 | 5.87 |
1957 | 8 | 5.46 | 6.40 | 6.42 | 6.48 | 6.13 |
1958 | 9 | 5.72 | 6.67 | 6.49 | 6.74 | 6.41 |
1959 | 10 | 5.99 | 6.94 | 6.58 | 7.02 | 6.70 |
1960 | 11 | 6.27 | 7.23 | 6.68 | 7.30 | 7.00 |
1961 | 12 | 6.57 | 7.53 | 6.78 | 7.60 | 7.32 |
1962 | 13 | 6.89 | 7.84 | 6.90 | 7.91 | 7.65 |
1963 | 14 | 7.21 | 8.16 | 7.03 | 8.23 | 8.00 |
1964 | 15 | 7.56 | 8.50 | 7.18 | 8.57 | 8.36 |
1965 | 16 | 7.91 | 8.85 | 7.34 | 8.92 | 8.73 |
1966 | 17 | 8.29 | 9.21 | 7.51 | 9.28 | 9.12 |
1967 | 18 | 8.68 | 9.59 | 7.69 | 9.66 | 9.53 |
1968 | 19 | 9.09 | 9.98 | 7.89 | 10.05 | 9.96 |
1969 | 20 | 9.52 | 10.39 | 8.11 | 10.46 | 10.41 |
1970 | 21 | 9.97 | 10.81 | 8.34 | 10.88 | 10.88 |
1971 | 22 | 10.44 | 11.26 | 8.59 | 11.32 | 11.36 |
1972 | 23 | 10.94 | 11.71 | 8.87 | 11.78 | 11.87 |
1973 | 24 | 11.45 | 12.19 | 9.16 | 12.26 | 12.40 |
1974 | 25 | 11.99 | 12.69 | 9.48 | 12.75 | 12.96 |
1975 | 26 | 12.55 | 13.21 | 9.82 | 13.26 | 13.53 |
1976 | 27 | 13.14 | 13.74 | 10.18 | 13.80 | 14.14 |
1977 | 28 | 13.76 | 14.30 | 10.58 | 14.35 | 14.77 |
1978 | 29 | 14.40 | 14.88 | 11.00 | 14.93 | 15.42 |
1979 | 30 | 15.08 | 15.48 | 11.46 | 15.53 | 16.11 |
1980 | 31 | 15.78 | 16.11 | 11.95 | 16.15 | 16.82 |
1981 | 32 | 16.52 | 16.76 | 12.48 | 16.80 | 17.56 |
1982 | 33 | 17.29 | 17.43 | 13.05 | 17.47 | 18.34 |
1983 | 34 | 18.09 | 18.13 | 13.67 | 18.16 | 19.15 |
1984 | 35 | 18.93 | 18.86 | 14.33 | 18.89 | 19.99 |
1985 | 36 | 19.80 | 19.61 | 15.04 | 19.63 | 20.87 |
1986 | 37 | 20.72 | 20.40 | 15.81 | 20.41 | 21.78 |
1987 | 38 | 21.67 | 21.21 | 16.64 | 21.22 | 22.73 |
1988 | 39 | 22.67 | 22.06 | 17.53 | 22.06 | 23.73 |
1989 | 40 | 23.71 | 22.93 | 18.50 | 22.93 | 24.76 |
1990 | 41 | 24.80 | 23.84 | 19.54 | 23.83 | 25.83 |
1991 | 42 | 25.93 | 24.79 | 20.67 | 24.76 | 26.95 |
1992 | 43 | 27.11 | 25.77 | 21.89 | 25.73 | 28.12 |
1993 | 44 | 28.34 | 26.78 | 23.20 | 26.73 | 29.33 |
1994 | 45 | 29.63 | 27.83 | 24.63 | 27.77 | 30.59 |
1995 | 46 | 30.96 | 28.92 | 26.17 | 28.85 | 31.90 |
1996 | 47 | 32.36 | 30.05 | 27.83 | 29.96 | 33.27 |
1997 | 48 | 33.81 | 31.22 | 29.64 | 31.11 | 34.68 |
1998 | 49 | 35.32 | 32.43 | 31.59 | 32.31 | 36.16 |
1999 | 50 | 36.90 | 33.69 | 33.71 | 33.54 | 37.69 |
2000 | 51 | 38.54 | 34.99 | 36.00 | 34.82 | 39.27 |
2001 | 52 | 40.24 | 36.34 | 38.48 | 36.14 | 40.92 |
2002 | 53 | 42.02 | 37.73 | 41.17 | 37.51 | 42.63 |
2003 | 54 | 43.86 | 39.17 | 44.08 | 38.92 | 44.41 |
2004 | 55 | 45.78 | 40.66 | 47.24 | 40.38 | 46.25 |
2005 | 56 | 47.77 | 42.20 | 50.65 | 41.89 | 48.16 |
2006 | 57 | 49.84 | 43.79 | 54.34 | 43.45 | 50.14 |
2007 | 58 | 51.99 | 45.44 | 58.33 | 45.05 | 52.19 |
2008 | 59 | 54.22 | 47.14 | 62.64 | 46.71 | 54.31 |
2009 | 60 | 56.53 | 48.89 | 67.30 | 48.42 | 56.51 |
2010 | 61 | 58.93 | 50.70 | 72.32 | 50.18 | 58.79 |
2011 | 62 | 61.41 | 52.57 | 77.72 | 52.00 | 61.14 |
2012 | 63 | 63.99 | 54.50 | 83.53 | 53.87 | 63.57 |
2013 | 64 | 66.65 | 56.49 | 89.77 | 55.79 | 66.08 |
2014 | 65 | 69.41 | 58.54 | 96.45 | 57.77 | 68.67 |
2015 | 66 | 72.26 | 60.66 | 103.59 | 59.81 | 71.35 |
2016 | 67 | 75.21 | 62.83 | 111.21 | 61.90 | 74.11 |
2017 | 68 | 78.25 | 65.08 | 119.30 | 64.05 | 76.96 |
2018 | 69 | 81.40 | 67.38 | 127.88 | 66.26 | 79.89 |
2019 | 70 | 84.64 | 69.76 | 136.94 | 68.53 | 82.92 |
2020 | 71 | 87.99 | 72.20 | 146.48 | 70.85 | 86.03 |
2021 | 72 | 91.44 | 74.71 | 156.47 | 73.24 | 89.22 |
2022 | 73 | 94.99 | 77.28 | 166.90 | 75.68 | 92.51 |
2023 | 74 | 98.64 | 79.93 | 177.72 | 78.18 | 95.89 |
2024 | 75 | 102.40 | 82.65 | 188.91 | 80.73 | 99.36 |
2025 | 76 | 106.26 | 85.43 | 200.41 | 83.35 | 102.91 |
2026 | 77 | 110.23 | 88.29 | 212.15 | 86.02 | 106.56 |
2027 | 78 | 114.30 | 91.22 | 224.08 | 88.74 | 110.29 |
2028 | 79 | 118.47 | 94.22 | 236.13 | 91.52 | 114.11 |
2029 | 80 | 122.75 | 97.29 | 248.21 | 94.36 | 118.02 |
2030 | 81 | 127.12 | 100.43 | 260.25 | 97.25 | 122.01 |
[1] | 陈彦光.2002. 城市人口—城区面积异速生长模型的理论基础、推广形式及其实证分析. 华中师范大学学报: 自然科学版, 36(3): 375-380. |
Chen Y G.2002. The allometric models on the relationships between area and population of urban systems. Journal of Central China Normal University: Natural Science, 36(3): 375-380. | |
[2] | 陈彦光.2008. 三个城市地域概念辨析. 城市发展研究, 15(2): 81-84, 116. |
Chen Y G.2008. Distinguishing three spatial concepts of cities by using the idea from system science. Urban Development Studies, 15(2): 81-84, 116. | |
[3] | 陈彦光.2009a. 人口与资源预测中Logistic模型承载量参数的自回归估计. 自然资源学报, 24(6): 1105-1113. |
Chen Y G.2009a. Carrying capacity estimation of logistic model in population and resources prediction by nonlinear autoregression. Journal of Natural Resources, 24(6): 1105-1113. | |
[4] | 陈彦光.2009b. 对称性与人文地理系统的规律性. 地理科学进展, 28(2): 312-320. |
Chen Y G.2009b. New way of looking at human geographical laws using the idea from symmetry. Progress in Geography, 28(2): 312-320. | |
[5] | 陈彦光.2010. 基于Excel的地理数据分析. 北京: 科学出版社. |
Chen Y G.2010. Geographical data analysis using Excel. Beijing, China: Scientific Press. | |
[6] | 陈彦光.2012a. 基于Matlab的地理数据分析. 北京: 高等教育出版社. |
Chen Y G.2012a. Geographical data analysis with Matlab. Beijing, China: Higher Education Press. | |
[7] | 陈彦光.2012b. 中国城市化水平统计数据的问题分析. 现代城市研究, 27(7): 4-8. |
Chen Y G.2012b. On the enigma of China's level of urbanization. Modern Urban Research, 27(7): 4-8. | |
[8] | 陈彦光.2013. 城市异速标度研究的起源、困境和复兴. 地理研究, 32(6): 1033-1045. |
Chen Y G.2013. The rise, fall, and revival process of allometric scaling analysis in urban studies. Geographical Research, 32(6): 1033-1045. | |
[9] | 陈彦光, 许秋红. 1999. 区域城市人口—面积异速生长关系的分形几何模型. 信阳师范学院学报: 自然科学版, 12(2): 198-203. |
Chen Y G, Xu Q H.1999. Studies on the fractal geometric model of allometric growth relationships between area and population of urban systems. Journal of Xinyang Teachers College: Natural Science Edition, 12(2): 198-203. | |
[10] | 陈彦光, 余斌. 2004. 异速生长律与城市郊区化的分维刻画. 华中师范大学学报: 自然科学版, 38(3): 370-373, 378. |
Chen Y G, Yu B.2004. The law of allometric growth and theoretical foundation of several suburbanization models. Journal Of Central China Normal University: Natural Science, 38(3): 370-373, 378. | |
[11] | 陈彦光, 周一星. 2001. 基于RS数据的城市系统异速生长分析和城镇化水平预测模型: 基本理论与应用方法. 北京大学学报: 自然科学版, 37(6): 819-826. |
Chen Y G, Zhou Y X.2001. Researches on models of allometric analysis of urban systems and forecast of urbanization level based on RS data of urban area. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 819-826. | |
[12] | 李郇, 陈刚强, 许学强. 2009. 中国城市异速增长分析. 地理学报, 64(4): 399-407. |
Li X, Chen G Q, Xu X Q.2009. Urban allometric growth in China: theory and facts. Acta Geographica Sinica, 64(4): 399-407. | |
[13] | 梁进社, 王旻. 2002. 城市用地与人口的异速增长和相关经验研究. 地理科学, 22(6): 649-654. |
Liang J S, Wang M.2002. The allometric growth of urban land use and population and its experiential research. Scientia Geographica Sinica, 22(6): 649-654. | |
[14] | 刘继生, 陈彦光. 2000. 长春地区城镇体系时空关联的异速生长分析: 1949-1988. 人文地理, 15(3): 6-12. |
Liu J S, Chen Y G.2000. An allometric analysis of the Changchun system of towns: 1949-1988. Human Geography, 15(3): 6-12. | |
[15] | 刘继生, 陈彦光. 2004. 城市密度分布与异速生长定律的数理关系探讨. 东北师范大学学报: 自然科学版, 36(4): 139-148. |
Liu J S, Chen Y G.2004. The spatial complexity of the law of allometric growth and urban population density. Journal of Northeast Normal University: Natural Science Edition, 36(4): 139-148. | |
[16] | 刘继生, 陈彦光. 2005. 山东省城市人口—城区面积的异速生长特征探讨. 地理科学, 25(2): 135-141. |
Liu J S, Chen Y G.2005. An allometric analysis of the Shandong urban system using ideas from fractals. Scientia Geographica Sinica, 25(2): 135-141. | |
[17] | 赵岑, 冯长春. 2010. 我国城市化进程中城市人口与城市用地相互关系研究. 城市发展研究, 17(10): 113-118. |
Zhao C, Feng C C.2010. Research on the interrelation between urban land use and population in urbanization process of China. Urban Development Studies, 17(10): 113-118. | |
[18] | 周一星.1999. 城市地理学. 北京: 商务印书馆. |
Zhou Y X.1999. Urban geography. Beijing, China: The Commercial Press. | |
[19] | Arbesman S.2012. The half-life of facts: why everything we know has an expiration date. New York, NY: Penguin Group. |
[20] | Batty M, Longley P A.1994. Fractal cities: a geometry of form and function. London, UK: Academic Press. |
[21] | Bertalanffy L von.1968. General system theory: foundations, development, and applications. New York, NY: George Breziller. |
[22] | Carroll C.1982. National city-size distributions: what do we know after 67 years of research? Progress in Human Geography, 6(1): 1-43. |
[23] | Chen Y G.2010. Characterizing growth and form of fractal cities with allometric scaling exponents. Discrete Dynamics in Nature and Society, Volume 2010, Article ID 194715, 22 pages. |
[24] | Chen Y G.2014a. An allometric scaling relation based on logistic growth of cities. Chaos, Solitons & Fractals, 65: 65-77. |
[25] | Chen Y G.2014b. Multifractals of central place systems: models, dimension spectrums, and empirical analysis. Physica A: Statistical Mechanics and its Applications, 402: 266-282. |
[26] | Knox P L, Marston S A.2009. Places and regions in global context: human geography (5th ed). Upper Saddle River, NJ: Prentice Hall. |
[27] | Lee Y.1989. An allometric analysis of the US urban system: 1960-80. Environment and Planning A, 21(4): 463-476. |
[28] | Lo C P.2002. Urban indicators of China from radiance-calibrated digital DMSP-OLS nighttime images. Annals of the Association of American Geographers, 92(2): 225-240. |
[29] | Lo C P, Welch R.1977. Chinese urban population estimates. Annals of the Association of American Geographers, 67(2): 246-253. |
[30] | Moore D S.2009. Statistics: concepts and controversies (7th ed). New York, NY: W H Freeman and Company. |
[31] | Naroll R S, Bertalanffy L von.1956. The principle of allometry in biology and social sciences. General Systems Yearbook, 1: 76-89. |
[32] | Rubenstein J M.1999. The cultural landscape: an introduction to human geography (6th ed). New York, NY: Macmillan Publishing Company. |
[1] | 吕敏娟, 曹小曙. 1980—2016年黄土高原地区人口和可达性异速标度分析[J]. 地理科学进展, 2020, 39(11): 1884-1897. |
[2] | 陈彦光. 城市地理研究中的单分形、多分形和自仿射分形[J]. 地理科学进展, 2019, 38(1): 38-49. |
[3] | 黄琳珊, 陈彦光, 李双成. 京津冀城镇用地空间结构的多分维谱分析[J]. 地理科学进展, 2019, 38(1): 50-64. |
[4] | 赵静湉, 陈彦光, 李双成. 京津冀城市用地形态的双分形特征及其演化[J]. 地理科学进展, 2019, 38(1): 77-87. |
[5] | 龙玉清, 陈彦光. 基于灯光数据的京津冀城市多标度异速分析[J]. 地理科学进展, 2019, 38(1): 88-100. |
[6] | 陈彦光. 城市形态的分维估算与分形判定[J]. 地理科学进展, 2017, 36(5): 529-539. |
[7] | 张晶, 濮励杰, 朱明, 许艳, 李鹏. 矢量和栅格数据土地利用结构分维值比较——以苏州为例[J]. 地理科学进展, 2013, 32(6): 932-939. |
[8] | 张威|郭善莉|李永化|李云艳. 辽东半岛黄土粒度分维特征及其环境意义[J]. 地理科学进展, 2010, 29(1): 79-86. |
[9] | 蒙莉娜1|郑新奇1|2|赵璐1|李志建1|杨鑫1. 区域城镇点-轴系统空间结构的分形模型[J]. 地理科学进展, 2009, 28(6): 944-951. |
[10] | 乔旭宁, 杨德刚, 毛汉英, 张小雷, 吴得文, 张豫芳,. 基于经济联系强度的乌鲁木齐都市圈 空间结构研究[J]. 地理科学进展, 2007, 26(6): 95-105. |
[11] | 朱晓华,乌恩. 旅游系统网络空间分形研究的科学展望[J]. 地理科学进展, 2007, 26(1): 133-142. |
[12] | 张豫芳,杨德刚,张小雷,马文红,张宏远. 天山北坡绿洲城市空间形态时空特征分析[J]. 地理科学进展, 2006, 25(6): 138-147. |
[13] | 陈彦光, 刘继生. Davis二倍数规律与Zipf三参数模型的等价性证明——关于城市规模分布法则的一个理论探讨[J]. 地理科学进展, 1999, 18(3): 255-262. |
|