地理科学进展 ›› 2014, Vol. 33 ›› Issue (7): 958-968.doi: 10.11820/dlkxjz.2014.07.011
出版日期:
2014-07-25
发布日期:
2014-07-25
作者简介:
作者简介:张海军(1978-),男,河北滦平人,硕士研究生,讲师,主要从事自然灾害模拟、评估和预警监测研究,E-mail:
基金资助:
Online:
2014-07-25
Published:
2014-07-25
摘要:
科学揭示火灾及其影响因素间的空间关系可为防火管理提供决策支持和有益启示。以往研究多在“空间平稳”的框架下进行火灾影响因素分析,但火灾和其可量化的影响因素往往自身均表现为“空间异质”,基于非空间的全局模型模拟可能会得出误导性甚至错误的结论。地理加权回归(GWR)可解释火灾及其影响因素间空间关系的局部变异。本文选取影响火灾分布的高程、坡度、居民地可达性、道路可达性、地表温度、归一化差植被指数和全球植被湿度指数作为解释变量,以是否火烧作为二元因变量,应用logistic GWR对河南省2002-2012年火季(9-10月)火灾的影响因素进行探索性分析。以多时态空间抽样取得训练样本,利用GWR 4.0软件开发一个logistic GWR火烧概率模型,从可靠性和区分能力两方面对模型性能分别进行内部检验和独立检验,以确保火灾影响因素分析的可靠和合理性。结果表明:①坡度、居民地可达性、温度、植被长势和植被湿度对河南省火灾的影响呈现显著空间变化,高程、道路可达性的影响空间变化不显著,低海拔、道路可达性差的区域更易发生火灾。②温度和植被长势对火灾影响省内全局显著,坡度、居民地可达性和植被湿度对火灾影响在省内仅部分区域显著。③河南省可划分为7种类型区,不同类型区的火灾影响因素相对重要性存在差异,应因地制宜制定防火策略和确定防火重点。④logistic GWR模型可用于分析火灾影响因素的局部空间变异,作为火险研究的一种有效工具。
中图分类号:
张海军. 河南省火灾影响因素的空间分析[J]. 地理科学进展, 2014, 33(7): 958-968.
Haijun ZHANG. Spatial analysis of fire-influencing factors in Henan Province[J]. PROGRESS IN GEOGRAPHY, 2014, 33(7): 958-968.
表1
LGR模型和LGWR模型拟合统计"
解释 变量 | LGR模型 | LGWR模型(高斯核,带宽为279个最近邻点) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | SE | C-1SE | C+1SE | Sig. | Min | LwrQ | Me | UprQ | Max | ||
截距 | -8.472 | 1.074 | -9.546 | -7.398 | 0.000 | -11.512 | -10.322 | -9.034 | -7.112 | -5.806 | |
Al | -0.682 | 1.254 | -1.936 | 0.572 | 0.586 | -1.075 | |||||
Sl | -4.819 | 1.844 | -6.664 | -2.975 | 0.009 | -13.513 | -6.667 | -3.636 | -2.654 | -1.498 | |
Dv | -0.972 | 0.614 | -1.586 | -0.359 | 0.113 | -2.811 | -1.934 | -1.127 | -0.357 | 0.228 | |
Dp | 0.768 | 0.464 | 0.304 | 1.232 | 0.098 | 0.689 | |||||
LST | 7.945 | 0.906 | 7.040 | 8.851 | 0.000 | 5.226 | 6.577 | 8.355 | 9.961 | 11.347 | |
NDVI | 4.262 | 0.969 | 3.293 | 5.231 | 0.000 | 2.282 | 3.206 | 4.280 | 5.523 | 6.304 | |
GVMI | -1.621 | 0.589 | -2.210 | -1.032 | 0.671 | -6.769 | -4.141 | -2.920 | -1.028 | -0.001 |
[1] | 邓欧, 李亦秋, 冯仲科, 等. 2012. 基于空间Logistic的黑龙江省林火风险模型与火险区划. 农业工程学报, 28(8): 200-205. |
Deng O, Li Y Q, Feng Z K, et al.2012. Model and zoning of forest fire risk in Heilongjiang Province based on spatial Logistic. Transactions of the Chinese Society of Agricultural Engineering, 28(8): 200-205. | |
[2] | 郭其乐, 陈怀亮, 邹春辉, 等. 2009. 河南省近年来遥感监测的森林火灾时空分布规律分析. 气象与环境科学, 32(4): 29-32. |
Guo Q L, Chen H L, Zou C H, et al.2009. Analysis of the laws of spatial and temporal distribution of remote sensing monitoring forest fires of Henan Province in recent years. Meteorological and Environmental Sciences, 32(4): 29-32. | |
[3] | 景国勋, 王卫敏, 温宏民. 2007. 基于BP神经网络的河南省火灾风险评价. 中国安全科学学报, 17(8): 16-19. |
Jing G X, Wang W M, Wen H M.2007. Risk assessment of fire accidents in Henan Province of China based on BP neural network. China Safety Science Journal, 17(8): 16-19. | |
[4] | 严小兵.2013. 中国省域犯罪率影响因素的空间非平稳性分析. 地理科学进展, 32(7): 1159-1166. |
Yan X B.2013. Spatial non-stationarity of the factors affecting crime rate at province scale in China. Progress in Geography, 32(7): 1159-1166. | |
[5] | 张海军, 戚鹏程. 2012. 基于频率比和逻辑回归模型的东北地区火险制图研究. 地理与地理信息科学, 28(5): 35-38,42. |
Zhang H J, Qi P C.2012. Mapping fire occurrence susceptibility in Northeast China: comparison of frequency ratio and binary logistic regression. Geography and Geo-information Science, 28(5): 35-38, 42. | |
[6] | Bisquert M, Caselles E, Sánchez J M, et al.2012. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data. International Journal of Wildland Fire, 21(8): 1025-1029. |
[7] | Boschetti L, Roy D P, Justice C O, et al.2010. Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product. International Journal of Wildland Fire, 19(6): 705-709. |
[8] | Ceccato P, Gobron N, Flasse S, et al.2002. Designing a spectral index to estimate vegetation water content from remote sensing data: part 1: theoretical approach. Remote Sensing of Environment, 82(2): 188-197. |
[9] | Chuvieco E, Aguado I, Yebra M, et al.2010. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1): 46-58. |
[10] | Dlamini W M.2011. Application of Bayesian networks for fire risk mapping using GIS and remote sensing data. GeoJournal, 76(3): 283-296. |
[11] | Fotheringham A S, Brunsdon C, Charlton M.2002. Geographically weighted regression: the analysis of spatially varying relationships. Chichester, UK: John Wiley & Sons Ltd. |
[12] | Garrigues S, Allard D, Baret F, et al.2006. Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sensing of Environment, 103(1): 81-96. |
[13] | Hurvich C M, Simonoff J S, Tsai C.1998. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 60(2): 271-293. |
[14] | Krebs P, Koutsias N, Conedera M.2012. Modelling the eco-cultural niche of giant chestnut trees: new insights into land use history in southern Switzerland through distribution analysis of a living heritage. Journal of Historical Geography, 38(4): 372-386. |
[15] | Lozano F J, Suárez-Seoane S, Luis E D.2007. Assessment of several spectral indices derived from multi-temporal landsat data for fire occurrence probability modeling. Remote Sensing of Environment, 107(4): 533-544. |
[16] | Martíınez-Fernández J, Chuvieco E, Koutsias N.2013. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Natural Hazards and Earth System Sciences, 13(2): 311-327. |
[17] | Matthews S A, Yang T C.2012. Mapping the results of local statistics: using geographically weighted regression. Demographic Research, 26(6): 151-166. |
[18] | Páez A, Scott D M.2005. Spatial statistics for urban analysis: a review of techniques with examples. GeoJournal, 61(1): 53-67. |
[19] | Parisien M A, Snetsinger S, Greenberg J A, et al.2012. Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 21(4): 313-327. |
[20] | Pearce J, Ferrier S.2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modeling, 133(3): 225-245. |
[21] | Preisler H K, Westerling A L, Gebert K M, et al.2011. Spatially explicit forecasts of large wildland fire probability and suppression costs for California. International Journal of Wildland Fire, 20(4): 508-517. |
[22] | Puri K, Areendran G, Raj K, et al.2011. Forest fire risk assessment in parts of Northeast India using geospatial tools. Journal of Forestry Research, 22(4): 641-647. |
[23] | Swets J A.1988. Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285-1293. |
[24] | Wang Q, Ni J, Tenhunen J.2005. Application of a geographically weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global Ecology and Biogeography, 14(4): 379-393. |
[25] | Wheeler D C.2007. Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A, 39(10): 2464-2481. |
[26] | Wu W, Zhang L J.2013. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Applied Geography, 37: 52-62. |
[27] | Zhang H J, Han X Y, Dai S.2013. Fire occurrence probability mapping of Northeast China with binary logistic regression model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1): 121-127. |
[1] | 谢铖, 黄波, 刘晓倩, 周涛, 王宇. 基于手机定位数据的深圳市热浪人口暴露度分析[J]. 地理科学进展, 2020, 39(2): 231-242. |
[2] | 高更和, 王玉婵, 徐祖牧, 郭雅琪, 牛宁. 农民工回流务工区位研究——以河南省45个村为例[J]. 地理科学进展, 2020, 39(12): 2083-2093. |
[3] | 韩静, 芮旸, 杨坤, 刘薇, 马滕. 基于地理探测器和GWR模型的中国重点镇布局定量归因[J]. 地理科学进展, 2020, 39(10): 1687-1697. |
[4] | 阴姣姣, 王晓芳, 贾垚焱, 李春明, 王娟. 旅游扶贫重点村空间可达性分布特征及影响因素研究[J]. 地理科学进展, 2019, 38(12): 1865-1876. |
[5] | 韩冬, 乔家君, 马玉玲. 基于空间界面视角的新时期乡村性空间分异机理——以河南省巩义市为例[J]. 地理科学进展, 2018, 37(5): 655-666. |
[6] | 李二玲, 胥亚男, 雍雅君, 魏莉霞. 农业结构调整与中国乡村转型发展——以河南省巩义市和鄢陵县为例[J]. 地理科学进展, 2018, 37(5): 698-709. |
[7] | 郑德凤, 刘晓星, 王燕燕, 吕乐婷. 基于三维生态足迹的中国自然资本利用时空演变及驱动力分析[J]. 地理科学进展, 2018, 37(10): 1328-1339. |
[8] | 王喜, 鲁丰先, 秦耀辰, 孙艳芳. 河南省碳源碳汇的时空变化研究[J]. 地理科学进展, 2016, 35(8): 941-951. |
[9] | 王珂靖, 蔡红艳, 杨小唤. 多元统计回归及地理加权回归方法在多尺度人口空间化研究中的应用[J]. 地理科学进展, 2016, 35(12): 1494-1505. |
[10] | 谢明霞, 王家耀, 陈科. 地理国情分类区划模型构建及实证研究——以河南省为例[J]. 地理科学进展, 2016, 35(11): 1360-1368. |
[11] | 罗奎, 方创琳, 马海涛. 中国城市化与非农就业增长的空间格局及关系类型[J]. 地理科学进展, 2014, 33(4): 457-466. |
[12] | 吴文佳, 张晓平, 李媛芳. 北京市景观可达性与住宅价格空间关联[J]. 地理科学进展, 2014, 33(4): 488-498. |
[13] | 杨慧敏, 高更和, 李二玲. 河南省农民工务工地选择及影响因素分析[J]. 地理科学进展, 2014, 33(12): 1634-1641. |
[14] | 陈太政, 李二玲, 李琬. 1989-2009年河南省农作物地理集聚及其演化机制[J]. 地理科学进展, 2013, 32(8): 1237-1245. |
[15] | 严小兵. 中国省域犯罪率影响因素的空间非平稳性分析[J]. 地理科学进展, 2013, 32(7): 1159-1166. |
|