[1] Houghton R A, Hackler J L, Lawrence K T. The US carbon budget: contributions from land-use change. Science, 1999, 285: 574~578.
[2] Scholes R J, Noble I R. Storing Carbon on Land. Science, 2001, 294: 1012~1013.
[3] IPCC.Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of IPCC. 2001.
[4] Smith et al. The global terrestrial carbon cycle. Water, Air, and Soil Pollution, 1993, 70:19~37.
[5] IGBP.IGBP Modelling and Data Activities 1994~1998, Global Change Report No.30, Stockholm: International Geosphere-Biosphere Programme. 1994.
[6] Lieth H, Whittaker R H. Primary productivity of the Biosphere. New York: Springer Verlag. 1975.
[7] 方精云. 全球生态学. 北京: 高等教育出版社. 2000.
[8] Zhou Guangsheng, Wang Yuhui, Jiang Yanling, Yang Zhengyu. Estimating biomass and net primary production from forest inventory data: a case study of China's Larix forests. Forest Ecology and Management, 2002, 169: 149~157.
[9] 朴世龙, 方精云, 陈安平. 我国不同季节陆地植被NPP 对气候变化的响应. 植物学报, 2003, 45(3): 269~275.
[10] Melillo J M, McGuire A D, Kicklighter D W, Moore B, Vorosmarty C J, Schloss A L. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234~240.
[11] Field C B, Behrenfeld M J, Randerson J T, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 1998, 281: 237~240.
[12] 方精云, 柯金虎, 唐志尧, 陈安平. 生物生产力的“4P”概念、估算及其相互关系. 植物生态学报, 2001, 25(4): 414~419.
[13] Keeling R F, Piper S C & Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature, 1996, 381: 218~221.
[14] Ciais P, Tans P P, Trolier M, White J W C and Francey R J. A large norther hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 1995, 269: 1098~1102.
[15] Myneni R B, Keeling C D, Tucker C J, Asrar C and Nemani R R Increased plant growth in the northern high latitudes from 1988~1991, Nature, 1997, 386: 698~702.
[16] Cramer W, Kicklighter D W, Bondeau A, Moore B, Churkina C, Nemry B, Ruimy A, Schloss A L. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biol., 1999, 5: 1~15.
[17] Field C B, Randerson J T, Malmstrom CM. Global net primary production: combing ecology and remote sensing. Remote Sens. Environ., 1995, 51: 74~88.
[18] 陈国南. 用迈阿密模型测算我国生产量的尝试. 自然资源学报, 1987, 2(3): 270~278.
[19] 侯光良, 游松才. 用筑后模型估算我国植物气候生产力. 自然资源学报, 1990, 5(1): 60~65.
[20] 张宪洲. 我国自然植被净第一性生产力的估算和分布. 自然资源, 1993, (1): 15~21.
[21] 朱志辉. 自然植被净第一性生产力估计模型. 科学通报, 1993, 38(15): 1422~1426.
[22] 肖乾广, 陈维英, 盛永伟, 郭 亮. 用NOAA气象卫星的AVHRR遥感资料估算中国的净第一性生产力. 植物学报, 1996, 38(1): 35~39.
[23] 肖向明, Melillo J M, Kicklighter D W等. CO2浓度变化和气候变化对中国陆地生态系统净初级生产及其平衡的影响.植物生态学报, 1998, 22(2): 97~118.
[24] 朴世龙, 方精云, 郭庆华. 1982~1999年我国植被净第一性生产力及其时空变化. 北京大学学报(自然科学版), 2001a, 37(4): 563~569.
[25] 朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力. 植物生态学报, 2001b, 25(5): 603~608.
[26] 陈利军, 刘高焕, 冯险峰. 运用遥感估算中国陆地植被净第一性生产力. 植物学报, 2001, 43(11): 1191~1198.
[27] 陈利军, 刘高焕, 励惠国. 中国植被净第一性生产力遥感动态监测. 遥感学报, 2002, 6(2): 129~135.
[28] 陶 波, 李克让, 邵雪梅, 曹明奎. 中国陆地净初级生产力的时空特征模拟. 地理学报, 2003, 58(3): 372~380.
[29] 曹明奎, 陶 波, 李克让等. 1981~2000年中国陆地生态系统碳通量的年际变化. 植物学报, 2003, 45(5): 552~560.
[30] 吴正方. 东北地区净第一性生产力对气候变暖的响应研究. 经济地理, 1997, 17(4): 49~55.
[31] 刘文杰. 西双版纳近40年气候变化对自然植被净第一性生产力的影响. 山地学报, 2000, 18(4): 296~300.
[32] 郭志华, 彭少麟, 王伯荪. 基于GIS和RS的广东陆地植被生产力及其时空格局.生态学报, 2001, 21(9): 1444~1449.
[33] 朴世龙, 方精云. 1982~1999年青藏高原植被净第一性生产力及其时空变化. 自然资源学报, 2002, 17(3): 373~380.
[34] 柯金虎, 朴世龙, 方精云.长江流域植被净第一性生产力及其时空格局研究. 植物生态学报, 2003, 27(6): 764~770.
[35] 孙 睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究. 地理学报, 2000, 55(1): 36~45.
[36] Hicke J A, Asner G P, Randerson J, Los S, Birdsey R, Jenkins J C, Tucker C J, Field C B. Trends in north American net primary productivity derived from satellite observations, 1982~1999. Global Biogeochemical Cycles, 2002, 16(2): 1~14.
[37] Myneni R, Williams D. On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 1994, 49 : 200~211.
[38] Prince S D, Goward S N. Global primary production: a remote sensing approach. Journal of biogeography, 1995, 22: 815~835.
[39] Goetz S J, Prince S D, Small J, Gleason A R, Thawley M M. Interannual variability of global terrestrial primary production: reduction of a model driven with satellite observations. J. Geophys. Res., 2000, 105: 20077~20091.
[40] Cao Mingkui, Prince S D, Small J, Goetz S J. Remotely Sensed Interannual Variations and Trends in Terrestrial Net Primary Productivity 1981~2000. Ecosystems, 2004, 7: 233~242.
[41] Goetz S J, Prince S D, Goward S N, Thawley MM, Small J. Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecol. Model., 1999, 122(3): 239~255.
[42] Prince S D, Goetz S J, Czajkowski K, Dubayah R, Goward S N. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using AVHRR satellite observations: Validation of algorithms. J. Hydrol., 1998, 212/213: 231~250.
[43] Czajkowski K P, Mulhern T, Goward S N, Cihlar J, Dubayah R O, Prince S D. Biospheric environmental monitoring at BOREAS with AVHRR observations. J. Geophys. Res., 1997, 102: 29651~29662.
|