地理科学进展 ›› 2010, Vol. 29 ›› Issue (2): 232-240.doi: 10.11820/dlkxjz.2010.02.015

• 旅游休闲与交通 • 上一篇    下一篇

北京市健身俱乐部多尺度空间格局

李仁杰1,2|郭风华3|张军海1,2|傅学庆1,2|贺媛媛1   

  1. 1. 河北师范大学资源与环境科学学院|石家庄 050016; |2. 河北省环境演变与生态建设实验室|石家庄 050016;
    3. 河北省地理科学研究所|石家庄 050011
  • 出版日期:2010-02-25 发布日期:2010-02-25
  • 作者简介:李仁杰(1975-)|男|副教授|博士生|主要研究方向为生态旅游、GIS开发与空间建模研究。E-mail:lrjgis@163.com
  • 基金资助:

    国家自然科学基金项目(40701137);河北省高校重点学科建设项目

Spatial Pattern of Health Clubs in Beijing at Various Scales

LI Renjie1,2, GUO Fenghua3, ZHANG Junhai1,2, FU Xueqing1,2, HE Yuanyuan1   

  1. 1. College of Resources and Environment Science, Hebei Normal University, Shijiazhuang 050016, China|
    2. Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050016, China|
    3. Hebei Institute of Geographical Sciences, Shijiazhuang 050011, China
  • Online:2010-02-25 Published:2010-02-25

摘要:

城市健身俱乐部是现代城市游憩空间中的新事物。利用点格局识别和探索性数据分析方法,借助GIS和地统计分析等软件,分析北京市健身俱乐部空间格局特征。最邻近距离系数和样方分析表明,健身俱乐部在全局尺度上存在明显空间聚集,但在行政分区和交通线路分割的单元中,则表现出聚集、随机和离散分布的不同空间格局。1~5km共5个尺度格网单元统计分析进一步验证了健身俱乐部空间格局具有显著尺度效应。样本密度、最邻近距离系数、Moran’s I系数分析发现,样本密度和最邻近距离系数均呈现明显的空间分异和空间自相关,其中2km、3km尺度反映的微观形态特征最为显著。证明全局尺度并非分析健身俱乐部空间格局的唯一和最好尺度,部分微观单元上空间格局将更明显,格局特征也可能会与全局尺度相反。因此多类型、多尺度统计单元能够更全面地反映点要素分布的规律。多尺度空间格局研究,为准确描述城市游憩空间中的点要素空间格局特征,提供了新的研究思路和具体实证。

关键词: 健身俱乐部;空间格局;尺度;游憩空间;北京

Abstract:

The research target is the health club, which is a special type of the recreation space in a city. Based on GIS and geostatistical software, using point pattern identification and ESDA(exploratory spatial data analysis) methods, the paper analyzes the spatial pattern characteristics of health clubs in Beijing. The nearest neighbor indicator(NNI) and quadrat analysis results indicate that the health clubs cluster together evidently at a whole region scale. But if we observe the pattern in the units separated by the roads or district, it presents different spatial patterns, varying from clustering to random, even dispersing. The analyzing results of health clubs based on the 5 scale cell units from 1 km to 5 km grids make further explanation that its spatial pattern are influenced evidently by the units’ scale. At any scales the density and NNI of health club samples have evident spatial diversification. From the Moran’s I statistics and Moran Scatterplot Map we also find the evident spatial autocorrelation of the units. The 2 km and 3 km unit scales are the best scales for finding the microscopic spatial pattern and diversification. So the whole region scale is not the only or the best scale for spatial pattern research of recreation spaces especially for the health clubs. In some microscopic units the spatial pattern will be more evident and the research results will even be opposite to that at the whole region scale. The pattern description based on more statistical units at various scales may discover the points’ distributional characteristics and the patterns more easily. The spatial pattern research of health club points in units at various scales provides a new way of describing spatial patterns of recreation space points. And the effects of such a way are also demonstrated in this paper.

Key words: Beijing, health clubs, recreation space, scale, spatial pattern