[1] |
Jia S F, Li Y Y, Lü A F, et al. City storm-flood events in China, 1984-2015 [J]. International Journal of Water Resources Development, 2019, 35(4): 605-618.
|
[2] |
Li Y, Gong S Y, Zhang Z R, et al. Vulnerability evaluation of rainstorm disaster based on ESA conceptual framework: A case study of Liaoning Province, China[J]. Sustainable Cities and Society, 2021, 64: 102540. doi: 10.1016/j.scs.2020.102540
doi: 10.1016/j.scs.2020.102540
|
[3] |
Shi J, Cui L L, Tian Z. Spatial and temporal distribution and trend in flood and drought disasters in East China[J]. Environmental Research, 2020, 185: 109406. doi: 10.1016/j.envres.2020.109406.
doi: 10.1016/j.envres.2020.109406
|
[4] |
Li L P, Zhang K M, Luo T, et al. An analysis of the drought and flood hazard characteristics and risks during the pre-rainy season in South China[J]. Natural Hazards, 2014, 71(2): 1195-1213.
|
[5] |
Bhaskar N R, French M N, Kyiamah G K. Characterization of flash floods in eastern Kentucky[J]. Journal of Hydrologic Engineering, 2000, 5(3): 327-331.
|
[6] |
Saharia M, Kirstetter P E, Vergara H, et al. Characterization of floods in the United States[J]. Journal of Hydrology, 2017, 548: 524-535.
|
[7] |
张永勇, 陈秋潭. 淮河中上游流域洪水主要类型及其时空分布特征[J]. 地理科学进展, 2020, 39(4): 627-635.
doi: 10.18306/dlkxjz.2020.04.009
|
|
[ Zhang Yongyong, Chen Qiutan. Characteristics of main flood event types and their temporal-spatial variations in the upper and middle reaches of the Huai River Basin. Progress in Geography, 2020, 39(4): 627-635. ]
doi: 10.18306/dlkxjz.2020.04.009
|
[8] |
Ma H, Yang D W. Hydrological model comparison and combination for flood forecast in the Three Gorges Region, China[J]. Advances in Geosciences, 2010, 17: 203-216.
|
[9] |
Petheram C, Rustomji P, Chiew F, et al. Rainfall-runoff modelling in northern Australia: A guide to modelling strategies in the tropics[J]. Journal of Hydrology, 2012, 462/463: 28-41.
|
[10] |
Zhang Y Q, Chiew F H S, Li M, et al. Predicting runoff signatures using regression and hydrological modeling approaches[J]. Water Resources Research, 2018, 54(10): 7859-7878.
|
[11] |
孙娜. 机器学习理论在径流智能预报中的应用研究[D]. 武汉: 华中科技大学, 2019.
|
|
[ Sun Na. The theory of machine learning and its applications in the hydrological forecasting. Wuhan, China: Huazhong University of Science and Technology, 2019. ]
|
[12] |
李伶杰, 王银堂, 胡庆芳, 等. 基于时变权重组合与贝叶斯修正的中长期径流预报[J]. 地理科学进展, 2020, 39(4): 643-650.
doi: 10.18306/dlkxjz.2020.04.011
|
|
[ Li Lingjie, Wang Yintang, Hu Qingfang, et al. Mid-and long-term runoff prediction based on time-varying weight combination and Bayesian correction. Progress in Geography, 2020, 39(4): 643-650. ]
doi: 10.18306/dlkxjz.2020.04.011
|
[13] |
Adnan R M, Petroselli A, Heddam S, et al. Comparison of different methodologies for rainfall-runoff modeling: Machine learning vs conceptual approach[J]. Natural Hazards, 2021, 105(3): 2987-3011.
|
[14] |
Deng T A, Chau K W, Duan H F. Machine learning based marine water quality prediction for coastal hydro-environment management[J]. Journal of Environmental Management, 2021, 284: 112051. doi: 10.1016/j.jenvman.2021112051.
doi: 10.1016/j.jenvman.2021112051
|
[15] |
Chen J L, Huang G R, Chen W J. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models[J]. Journal of Environmental Management, 2021, 293: 112810. doi: 10.1016/j.jenvman.2021.112810.
doi: 10.1016/j.jenvman.2021.112810
|
[16] |
McIntyre N, Al-Qurashi A, Wheater H. Regression analysis of rainfall-runoff data from an arid catchment in Oman[J]. Hydrological Sciences Journal, 2007, 52(6): 1103-1118.
|
[17] |
Al-Rawas G A, Valeo C. Relationship between wadi drainage characteristics and peak-flood flows in arid northern Oman[J]. Hydrological Sciences Journal, 2010, 55(3): 377-393.
|
[18] |
林木生, 陈兴伟, 陈莹. 晋江西溪流域洪水与暴雨时空分布特征的相关分析[J]. 资源科学, 2011, 33(12): 2226-2231.
|
|
[ Lin Musheng, Chen Xingwei, Chen Ying. Regression analysis of flood response to the spatial and temporal variability of storm in the Jinjiangxixi Watershed. Resources Science, 2011, 33(12): 2226-2231. ]
|
[19] |
Boukharouba K, Roussel P, Dreyfus G, et al. Flash flood forecasting using support vector regression: An event clustering based approach[C]// 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). Southampton, UK: IEEE, 2013: 1-6.
|
[20] |
Li X, Sha J, Wang Z L. Comparison of daily streamflow forecasts using extreme learning machines and the random forest method[J]. Hydrological Sciences Journal, 2019, 64(15): 1857-1866.
|
[21] |
牟凤云, 杨猛, 林孝松, 等. 基于机器学习算法模型的巫山县洪水灾害研究[J]. 中山大学学报(自然科学版), 2020, 59(1): 105-113.
|
|
[ Mu Fengyun, Yang Meng, Lin Xiaosong, et al. The flood disasters in Wushan County based on machine learning algorithm model. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(1): 105-113. ]
|
[22] |
Tayebiyan A, Mohammad T A, Ghazali A H. Artificial neural network for modelling rainfall-runoff[J]. Pertanika Journal of Science & Technology, 2016, 24(2): 319-330.
|
[23] |
Shortridge J E, Guikema S D, Zaitchik B F. Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds[J]. Hydrology and Earth System Sciences, 2016, 20(7): 2611-2628.
|
[24] |
左岗岗. 基于机器学习的渭河流域径流预测系统研究[D]. 西安: 西安理工大学, 2017.
|
|
[ Zuo Ganggang. The research of Wei River runoff prediction system based on machine learning. Xi'an, China: Xi'an University of Technology, 2017. ]
|
[25] |
冯志刚, 梁树献, 徐胜, 等. 近60年淮河流域夏季降水的变化特征[J]. 水文, 2019, 39(6): 85-89.
|
|
[ Feng Zhigang, Liang Shuxian, Xu Sheng, et al. Variation characteristics of summer precipitation in Huaihe River Basin in recent 60years. Journal of China Hydrology, 2019, 39(6): 85-89. ]
|
[26] |
Akaike H. A Bayesian analysis of the minimum AIC procedure[J]. Annals of the Institute of Statistical Mathematics, 1978, 30(1): 9-14.
|
[27] |
杨柳, 王钰. 泛化误差的各种交叉验证估计方法综述[J]. 计算机应用研究, 2015, 32(5): 1287-1290, 1297.
|
|
[ Yang Liu, Wang Yu. Survey for various cross-validation estimators of generalization error. Application Research of Computers, 2015, 32(5): 1287-1290, 1297. ]
|