地理科学进展 ›› 2015, Vol. 34 ›› Issue (3): 364-372.doi: 10.11820/dlkxjz.2015.03.011
收稿日期:
2014-04-01
修回日期:
2014-12-01
出版日期:
2015-03-25
发布日期:
2015-03-25
作者简介:
作者简介:王晓蕾(1986-),女,山东滨州人,博士生,主要从事流域水文模拟研究,E-mail:
基金资助:
Xiaolei WANG1,2, Lin SUN1, Yiqing ZHANG1,2, Yi LUO1()
Received:
2014-04-01
Revised:
2014-12-01
Online:
2015-03-25
Published:
2015-03-25
摘要:
阿姆河是中亚最大的一条河流,其径流主要来源于西天山和帕米尔高原的积雪、冰川融水,由于地处高山区,数据获取困难,对其产流的具体组成与季节分布特征认识不足。本文利用分布式水文模型模拟阿姆河1951-2005年的产流过程,分析雪、冰融水年内分布和年际变化特征以及气候变化的影响。结果表明:
王晓蕾, 孙林, 张宜清, 罗毅. 中亚阿姆河上游产流过程特征研究[J]. 地理科学进展, 2015, 34(3): 364-372.
Xiaolei WANG, Lin SUN, Yiqing ZHANG, Yi LUO. Runoff generation in the headwater of Amu Darya, Central Asia[J]. PROGRESS IN GEOGRAPHY, 2015, 34(3): 364-372.
表1
利用SWAT-RSG模型模拟中亚阿姆河产流区采用的空间数据"
空间数据 | 比例尺/分辨率 | 格式 | 来源 |
---|---|---|---|
DEM | 90 m | ESRI Grid | 国际农业研究咨询组织空间咨询团体(CGIAR-CSI)(http://srtm.csi.cgiar.org/) |
土壤图 | 1:100万 | Arc/Info Coverage | 世界粮食组织FAO的HWSD(http://www.fao.org/nr/land/soils/harmonized-world-soil-database/en/) |
土地利用图 | 300 m | Arc/Info Coverage | 欧洲航天局2009年最新版世界卫星地图 |
中亚冰川编目 | Arc/Info Coverage | 世界冰川监测机构(WGMS)于1989年发布的世界冰川目录(WGI),帕米尔冰川数据集 (Pamir Glaciers Dataset V.1) |
表2
中亚阿姆河产流区SWAT-RSG模型参数化结果"
参数 | 定义 | 参数值变化范围 | 调整后参数值/范围 |
---|---|---|---|
ALPHA_BF | 基流衰退系数 | 0~1 | 0.02~0.8 |
RCHRG_DP | 深层库下渗比例 | 0~1 | 0.4 |
CH_K2 | 河道导水系数/(mm/hr) | 0~300 | 10~50 |
gmfmx | 最大融冰度日因子/(mm/(℃ | 1.4~16.0 | 3.0~14.5 |
gmfmn | 最小融冰度日因子/(mm/(℃ | 1.0~16.0 | 1.0~8.8 |
SMFMX | 最大融雪度日因子/(mm/(℃ | 1.4~6.7 | 2.5~3.5 |
SMFMN | 最小融雪度日因子/(mm/(℃ | 1.4~6.7 | 1.0~2.5 |
表3
SWAT-RSG模型在中亚阿姆河产流区参数化的评价指标"
流域 | 水文站 | 率定期 | 验证期 | |||||
---|---|---|---|---|---|---|---|---|
NSE | PBIAS | R2 | NSE | PBIAS | R2 | |||
喷赤河 | Khorog | 0.94 | 5.57 | 0.94 | 0.87 | 23.00 | 0.95 | |
瓦赫什河 | Garm | 0.77 | -6.68 | 0.80 | 0.74 | -9.09 | 0.77 | |
Nurek | 0.88 | -0.10 | 0.88 | 0.33 | -4.61 | 0.61 | ||
卡菲尔尼甘河 | Alibegi | 0.88 | -2.33 | 0.88 | 0.85 | 9.04 | 0.86 | |
Chinor | 0.87 | 4.82 | 0.96 | 0.88 | 9.92 | 0.94 | ||
Dagana | 0.89 | 11.48 | 0.93 | 0.92 | 8.80 | 0.94 | ||
苏尔汉河 | Karatog | 0.89 | 6.49 | 0.90 | 0.82 | 16.11 | 0.86 | |
Dashnabad | 0.74 | -15.84 | 0.87 | 0.80 | -11.26 | 0.82 | ||
King-guzar | 0.78 | -4.50 | 0.79 | 0.89 | -6.65 | 0.90 |
1 | 白淑英, 王莉, 史建桥, 等. 2013. 基于SWAT模型的开都河流域径流模拟[J]. 干旱区资源与环境, 27(9): 79-84. |
[Bai S Y, Wang L, Shi J Q, et al.2013. Runoff simulation for Kaidu River Basin based on SWAT model[J]. Journal of Arid Land Resources and Environment, 27(9): 79-84.] | |
2 | 李慧, 靳晟, 雷晓云, 等. 2010. SWAT 模型参数敏感性分析与自动率定的重要性研究: 以玛纳斯河径流模拟为例[J]. 水资源与水工程学报, 21(1): 79-82. |
[Li H, Jin S, Lei X Y, et al.2010. Study on the importance of sensitivity analysis and auto-calibration of SWAT model: taking the case study of Manasi Watershed[J]. Journal of Water resources and Water Engineering, 21(1): 79-82.] | |
3 | 芮孝芳. 2004. 水文学原理[M]. 北京: 中国水利水电出版社. |
[Rui X F.2004. Principle of hydrology[M]. Beijing, China: China Water & Power Press.] | |
4 | 杨针娘. 1991. 中国冰川水资源[M]. 甘肃: 甘肃科学技术出版社. |
[Yang Z N.1991. Glacier water resources in China[M]. Gansu, China: Gansu Science and Technology Press.] | |
5 | Agal'tseva N, Blogov M V, Spektorman T Y, et al.2011. Estimating hydrological characteristics in the Amu Darya River Basin under climate change conditions[J]. Russian Meteorology and Hydrology, 36(10): 681-689. |
6 | Arnold J G, Allen P M.1996. Estimating hydrologic budgets for three Illinois watersheds[J]. Journal of Hydrology, 176: 57-77. |
7 | Arnold J G, Moriasi D N, Gassman P W, et al.2012. SWAT: model use, calibration, and validation[J]. Transactions of the Asabe, 55: 1491-1508. |
8 | Conrad C, Dech S, Hafeez M, et al.2007. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products[J]. Irrigation and Drainage Systems, 21: 197-218. |
9 | Froebrich J, Kayumov O.2004. Water management aspects of Amu Darya[M]//Nihoul J J, Zavialov P, Micklin P. Dying and dead seas climatic versus anthropic causes. Berlin, Germany: Springer Netherlands: 49-76. |
10 | Gassman P W, Reyes M R, Green C H, et al.2007. The soil and water assessment tool: historical development, applications, and future research directions[J]. Transactions of the Asabe, 50(4): 1211-1250. |
11 | Hagg W, Hoelzle M, Wagner S, et al.2013. Glacier and runoff changes in the Rukhk catchment, upper Amu Darya Basin until 2050[J]. Global and Planetary Change, 110: 62-73. |
12 | Kendall M G A.1938. New measure of rank correlation[J]. Biometrika, 30: 81-93. |
13 | Kure S, Jang S, Ohara N, et al.2013. Hydrologic impact of regional climate change for the snowfed and glacierfed river basins in the Republic of Tajikistan: hydrological response of flow to climate change[J]. Hydrological Processes, 27: 4057-4070. |
14 | Li Z L, Shao Q X, Xu Z X, et al.2010. Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: acase study of SWAT model applied to Yingluoxia watershed in Northwest China[J]. Journal of Hydrology, 385: 76-83. |
15 | Luo Y, Arnold J, Allen P, et al.2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China[J]. Hydrology and Earth System Sciences, 16(4): 1259-1267. |
16 | Luo Y, Arnold J, Liu S, et al.2013. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, Northwest China[J]. Journal of Hydrology, 477: 72-85. |
17 | Mann H B.1945. Non-parametric test against trend[J]. Econometrica, 13: 245-259. |
18 | Moriasi D, Arnold J, Van Liew M, et al.2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the Asabe, 50: 885-900. |
19 | Nash J, Sutcliffe J.1970. River flow forecasting through conceptual models part I: adiscussion of principles[J]. Journal of Hydrology, 10: 282-290. |
20 | Nezlin N P, Kostianoy A G, Lebedev S A.2004. Interannual variations of the discharge of Amu Darya and Syr Darya estimated from global atmospheric precipitation[J]. Journal of marine systems, 47: 67-75. |
21 | Olsson O, Gassmann M, Wegerich K, et al.2010. Identification of the effective water availability from streamflows in the Zerafshan River Basin, Central Asia[J]. Journal of Hydrology, 390(3-4): 190-197. |
22 | Rakhmatullaev S, Huneau F, Kazbekov J, et al.2010. Groundwater resources use and management in the Amu Darya River Basin(Central Asia)[J]. Environmental Earth Sciences, 59: 1183-1193. |
23 | Savitskiy A G, Schlüter M, Taryannikova R V, et al.2008. Current and future impacts of climate change on river runoff in the Central Asian river basins[M]//Claudia P, Pavel K, Geogr J. Adaptive and integrated water management. New York: Springer: 323-339. |
24 | Sheffield J, Goteti G, Wood E F.2006. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling[J]. Journal of Climate, 19: 3088-3111. |
25 | Unger-Shayesteh K, Vorogushyn S, Farinotti D, et al.2013. What do we know about past changes in the water cycle of Central Asian headwaters: a review[J]. Global and Planetary Change, 110: 4-25. |
26 | Viviroli D, Weingartner R.2004. The hydrological significance of mountains: from regional to global scale[J]. Hydrology and Earth System Sciences, 8: 1017-1030. |
27 | Yatagai A, Kamiguchi K, Arakawa O, et al.2012. APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. Bulletin of the American Meteorological Society, 93: 1401-1415. |
[1] | 郭禹含, 王中根, 伍玉良. 多源再分析降水数据在拉萨河流域应用对比研究[J]. 地理科学进展, 2017, 36(8): 1033-1039. |
[2] | 江净超, 朱阿兴, 秦承志, 刘军志, 陈腊娇, 吴辉. 分布式水文模型软件系统研究综述[J]. 地理科学进展, 2014, 33(8): 1090-1100. |
[3] | 刘军志, 朱阿兴, 秦承志, 陈腊娇, 吴辉, 江净超. 分布式水文模型的并行计算研究进展[J]. 地理科学进展, 2013, 32(4): 538-547. |
[4] | 王中根,朱新军,夏军,李建新. 海河流域分布式SWAT模型的构建[J]. 地理科学进展, 2008, 27(4): 1-6. |
[5] | 张奇. 湖泊集水域地表—地下径流联合模拟[J]. 地理科学进展, 2007, 26(5): 1-10. |
[6] | 池宸星,郝振纯, 王 玲, 胡健伟. 黄土区人类活动影响下的 产汇流模拟研究[J]. 地理科学进展, 2005, 24(3): 101-108. |
[7] | 刘昌明, 李道峰, 田英, 郝芳华, 杨桂莲. 基于DEM的分布式水文模型在大尺度流域应用研究[J]. 地理科学进展, 2003, 22(5): 437-445. |
[8] | 王中根, 刘昌明, 黄友波. SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003, 22(1): 79-86. |
[9] | 王中根, 刘昌明, 左其亭, 刘青娥. 基于DEM的分布式水文模型构建方法[J]. 地理科学进展, 2002, 21(5): 430-439. |
[10] | 万洪涛, 周成虎, 万庆. 流域水文模型计算域离散方法[J]. 地理科学进展, 2001, 20(4): 347-354. |
[11] | 王中根,朱新军夏军,李建新. 海河流域分布式SWAT 模型的构建[J]. 地理科学进展, 0, 0(): 1-6. |
|