地理科学进展 ›› 2023, Vol. 42 ›› Issue (3): 587-601.doi: 10.18306/dlkxjz.2023.03.014
方建1,2(), 陶凯1,2, 牟莎1,2, 方佳毅3, 杜士强4
收稿日期:
2022-07-29
修回日期:
2022-11-21
出版日期:
2023-03-28
发布日期:
2023-03-27
作者简介:
方建(1988— ),男,安徽安庆人,博士,副教授,硕士生导师,主要研究方向为全球变化与灾害风险。E-mail: fj20061028@126.com
基金资助:
FANG Jian1,2(), TAO Kai1,2, MU Sha1,2, FANG Jiayi3, DU Shiqiang4
Received:
2022-07-29
Revised:
2022-11-21
Online:
2023-03-28
Published:
2023-03-27
Supported by:
摘要:
近年来频发的极端天气气候事件引起了广泛关注,其灾害过程往往源自多个因素的相互作用,给区域安全和风险防范带来诸多挑战。论文结合文献计量,在系统梳理复合极端事件相关研究的基础上,重点阐述了复合极端事件的概念内涵、类型特征和主要驱动因素,并归纳了复合事件时空关联分析和危险性评估的主要方法。结果表明:① 近年来研究的事件类型丰富多样,不同时空关联、不同要素组合类型事件的研究不断涌现;② 研究内容体系日益完善,概念特征、关联关系、成因机制和危险性评估的研究持续推进;③ 研究技术手段不断发展,以Copula为核心的联合概率统计建模实现由二维向多维、由静态向动态发展,以耦合水文水动力学模型和海洋模式为代表的数值模拟精细度不断提高。但在部分重难点问题方面仍需进一步深入研究,包括时间继发型和空间异地型复合事件复杂时空关联结构的诊断建模,天气系统、大尺度环流因子和人类活动多因素对复合事件综合影响的研究,复合事件危险性情景及多维联合概率分析等。此外,未来亟需探究气候变化下复合事件边缘分布和关联结构的非平稳变化及其对复合事件风险的影响。
方建, 陶凯, 牟莎, 方佳毅, 杜士强. 复合极端事件及其危险性评估研究进展[J]. 地理科学进展, 2023, 42(3): 587-601.
FANG Jian, TAO Kai, MU Sha, FANG Jiayi, DU Shiqiang. Progress of research on compound extreme event and hazard assessment[J]. PROGRESS IN GEOGRAPHY, 2023, 42(3): 587-601.
表1
复合极端事件类型分类、特征及案例
类型 | 特征描述 | 案例 | 文献 |
---|---|---|---|
时空同步型 | 复合事件的多个致灾因子同时出现在同一地点 | 高温—干旱(干热复合) | [ |
低温—冷冻(湿冷复合) | [ | ||
河流洪水与风暴潮复合 | [ | ||
强降水与强风复合 | [ | ||
强降水与风暴潮复合 | [ | ||
台风、暴雨、风暴潮、洪水等多碰头 | [ | ||
同地—继发型 | 复合事件的不同致灾因子先后出现在同一地点 | 前期高土壤湿度与后期强降水复合 | [ |
前期森林火灾与后期强降水复合 | [ | ||
日间极端高温与夜间极端高温复合 | [ | ||
旱涝急转 | [ | ||
异地—同发型 | 复合事件的不同致灾因子同时出现在不同地点 | 不同地区同时发生干旱造成粮食危机 | [ |
大气遥相关或大气阻塞系统影响下不同地区同时发生极端天气事件 | [ | ||
异地—继发型 | 复合事件的致灾因子在不同时间出现在不同地点 | 不同支流及上下游暴雨洪水的相继发生 | [ |
表2
常见复合事件类型及其驱动和影响因素
复合事件类型 | 相关天气系统/驱动因素/物理机制 |
---|---|
强降水与风暴潮/强风 | 热带气旋、大气河流、极端温带气旋、锋面系统、海平面上升 |
内陆暴雨洪涝 | 大气河流、锋面系统、季风、强对流风暴和热带气旋 |
高温与干旱 | 阻塞高压、大气静稳模式、副热带高压、高压脊、大气长波振荡、陆气耦合反馈作用 |
高温与湿润 | 高温增强大气持水能力(Clapeyron-Clausius方程),增加大气湿度 |
低温与干旱 | 干冷空气的寒潮、冷高压、极涡 |
低温与湿润 | 暴雪和冷锋系统、极涡、冷涡 |
日间—夜间持续高温 | 城市化、异常的反气旋、稳定的大气层结 |
高温热浪—暴雨洪水 | 高温增加感热通量和水汽辐合、增强大气不稳定度和暴雨强度 |
高温干旱森林火灾 | 大气阻塞(高温、干旱)、异常反气旋(强风)、陆气耦合反馈作用 |
[1] |
Stott P. How climate change affects extreme weather events[J]. Science, 2016, 352: 1517-1518.
doi: 10.1126/science.aaf7271 |
[2] |
吴绍洪, 高江波, 邓浩宇, 等. 气候变化风险及其定量评估方法[J]. 地理科学进展, 2018, 37(1): 28-35.
doi: 10.18306/dlkxjz.2018.01.004 |
[Wu Shaohong, Gao Jiangbo, Deng Haoyu, et al. Climate change risk and methodology for its quantitative assessment. Progress in Geography, 2018, 37(1): 28-35.]
doi: 10.18306/dlkxjz.2018.01.004 |
|
[3] |
Zscheischler J, Westra S, van den Hurk B J J M, et al. Future climate risk from compound events[J]. Nature Climate Change, 2018, 8(6): 469-477.
doi: 10.1038/s41558-018-0156-3 |
[4] |
Aghakouchak A, Cheng L Y, Mazdiyasni O, et al. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought[J]. Geophysical Research Letters, 2014, 41(24): 8847-8852.
doi: 10.1002/2014GL062308 |
[5] |
Zscheischler J, Seneviratne S I. Dependence of drivers affects risks associated with compound events[J]. Science Advances, 2017, 3(6). doi: 10.1126/sciadv.1700263.
doi: 10.1126/sciadv.1700263 |
[6] |
Leonard M, Westra S, Phatak A, et al. A compound event framework for understanding extreme impacts[J]. WIREs Climate Change, 2014, 5(1): 113-128.
doi: 10.1002/wcc.2014.5.issue-1 |
[7] | IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation: A special report of working groups I and II of the Intergovernmental Panel on Climate Change[R]. Cambridge, UK: Cambridge University Press, 2012. |
[8] | IPCC. Summary for policymakers[M]// IPCC.Climate change 2021: The physical science basis. Cambridge, UK: Cambridge University Press, 2021. |
[9] | 余荣, 翟盘茂. 关于复合型极端事件的新认识和启示[J]. 大气科学学报, 2021, 44(5): 645-649. |
[Yu Rong, Zhai Panmao. Advances in scientific understanding on compound extreme events. Transactions of Atmospheric Sciences, 2021, 44(5): 645-649.] | |
[10] |
Tilloy A, Malamud B D, Winter H, et al. A review of quantification methodologies for multi-hazard interrelationships[J]. Earth-Science Reviews, 2019, 196. doi: 10.1016/j.earscirev.2019.102881.
doi: 10.1016/j.earscirev.2019.102881 |
[11] | 史培军, 吕丽莉, 汪明, 等. 灾害系统: 灾害群、灾害链、灾害遭遇[J]. 自然灾害学报, 2014, 23(6): 1-12. |
[Shi Peijun, Lv Lili, Wang Ming, et al. Disaster system: Disaster cluster, disaster chain and disaster compound. Journal of Natural Disasters, 2014, 23(6): 1-12.] | |
[12] |
Hao Z C, Hao F H, Singh V P, et al. Quantifying the relationship between compound dry and hot events and El Niño-Southern Oscillation (ENSO) at the global scale[J]. Journal of Hydrology, 2018, 567: 332-338.
doi: 10.1016/j.jhydrol.2018.10.022 |
[13] |
Saarinen T F, Hewitt K, Burton I. The hazardousness of a place: A regional ecology of damaging events[J]. Geographical Review, 1973, 63: 134-136.
doi: 10.2307/213252 |
[14] | 史培军. 再论灾害研究的理论与实践[J]. 自然灾害学报, 1996, 5(4): 6-17. |
[Shi Peijun. Theory and practice of disaster study. Journal of Natural Disasters, 1996, 5(4): 6-17.] | |
[15] | Zscheischler J, Martius O, Westra S, et al. A typology of compound weather and climate events[J]. Nature Reviews Earth & Environment, 2020, 1(7): 333-347. |
[16] | Merz B, Blöschl G, Vorogushyn S, et al. Causes, impacts and patterns of disastrous river floods[J]. Nature Reviews Earth & Environment, 2021, 2(9): 592-609. |
[17] |
Simpson N P, Mach K J, Constable A, et al. A framework for complex climate change risk assessment[J]. One Earth, 2021, 4(4): 489-501.
doi: 10.1016/j.oneear.2021.03.005 |
[18] |
Ghanbari M, Arabi M, Kao S C, et al. Climate change and changes in compound coastal-riverine flooding hazard along the U.S. coasts[J]. Earth's Future, 2021, 9(5): e2021EF002055. doi: 10.1029/2021EF002055.
doi: 10.1029/2021EF002055 |
[19] |
Dykstra S L, Dzwonkowski B. The role of intensifying precipitation on coastal river flooding and compound river-storm surge events, Northeast Gulf of Mexico[J]. Water Resources Research, 2021, 57(11): e2020WR029363. doi: 10.1029/2020WR029363.
doi: 10.1029/2020WR029363 |
[20] |
Khatun A, Ganguli P, Bisht D S, et al. Understanding the impacts of predecessor rain events on flood hazard in a changing climate[J]. Hydrological Processes, 2022, 36(2): e14500. doi: 10.1002/hyp.14500.
doi: 10.1002/hyp.14500 |
[21] |
Liao Z, Chen Y, Li W, et al. Growing threats from unprecedented sequential flood-hot extremes across China[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094505. doi: 10.1029/2021GL094505.
doi: 10.1029/2021GL094505 |
[22] |
You J W, Wang S. Higher probability of occurrence of hotter and shorter heat waves followed by heavy rainfall[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094831. doi: 10.1029/2021GL094831.
doi: 10.1029/2021GL094831 |
[23] |
Vahedifard F, AghaKouchak A, Jafari N H. Compound hazards yield Louisiana flood[J]. Science, 2016, 353: 1374. doi: 10.1126/science.aai8579.
doi: 10.1126/science.aai8579 pmid: 27708028 |
[24] |
Li H W, Li Y P, Huang G H, et al. Quantifying effects of compound dry-hot extremes on vegetation in Xinjiang (China) using a vine-Copula conditional probability model[J]. Agricultural and Forest Meteorology, 2021, 311: 108658. doi: 10.1016/j.agrformet.2021.108658.
doi: 10.1016/j.agrformet.2021.108658 |
[25] |
Wu X Y, Hao Z C, Hao F H, et al. Spatial and temporal variations of compound droughts and hot extremes in China[J]. Atmosphere, 2019, 10(2): 95. doi: 10.3390/atmos10020095.
doi: 10.3390/atmos10020095 |
[26] |
Zscheischler J, Fischer E M. The record-breaking compound hot and dry 2018 growing season in Germany[J]. Weather and Climate Extremes, 2020, 29: 100270. doi: 10.1016/j.wace.2020.100270.
doi: 10.1016/j.wace.2020.100270 |
[27] |
De Luca P, Messori G, Faranda D, et al. Compound warm-dry and cold-wet events over the Mediterranean[J]. Earth System Dynamics, 2020, 11(3): 793-805.
doi: 10.5194/esd-11-793-2020 |
[28] |
Zhou P, Liu Z Y. Likelihood of concurrent climate extremes and variations over China[J]. Environmental Research Letters, 2018, 13(9): 94023. doi: 10.1088/1748-9326/aade9e.
doi: 10.1088/1748-9326/aade9e |
[29] |
Vignotto E, Engelke S, Zscheischler J. Clustering bivariate dependencies of compound precipitation and wind extremes over Great Britain and Ireland[J]. Weather and Climate Extremes, 2021, 32: 100318. doi: 10.1016/j.wace.2021.100318.
doi: 10.1016/j.wace.2021.100318 |
[30] |
Zscheischler J, Naveau P, Martius O, et al. Evaluating the dependence structure of compound precipitation and wind speed extremes[J]. Earth System Dynamics, 2021, 12(1): 1-16.
doi: 10.5194/esd-12-1-2021 |
[31] | 贺芳芳, 胡恒智, 董广涛, 等. 上海中心城区复合洪涝淹没模拟及未来重现预估[J]. 灾害学, 2020, 35(4): 93-98, 134. |
[He Fangfang, Hu Hengzhi, Dong Guangtao, et al. Compound flooding simulation and prediction of future recurrence in Shanghai downtown area. Journal of Catastrophology, 2020, 35(4): 93-98, 134.] | |
[32] |
Fang J Y, Wahl T, Fang J, et al. Compound flood potential from storm surge and heavy precipitation in coastal China: Dependence, drivers, and impacts[J]. Hydrology and Earth System Sciences, 2021, 25(8): 4403-4416.
doi: 10.5194/hess-25-4403-2021 |
[33] |
Wahl T, Jain S, Bender J, et al. Increasing risk of compound flooding from storm surge and rainfall for major US cities[J]. Nature Climate Change, 2015, 5(12): 1093-1097.
doi: 10.1038/NCLIMATE2736 |
[34] |
Poschlod B, Zscheischler J, Sillmann J, et al. Climate change effects on hydrometeorological compound events over southern Norway[J]. Weather and Climate Extremes, 2020, 28: 100253. doi: 10.1016/j.wace.2020.100253.
doi: 10.1016/j.wace.2020.100253 |
[35] |
Moftakhari H, AghaKouchak A. Increasing exposure of energy infrastructure to compound hazards: Cascading wildfires and extreme rainfall[J]. Environmental Research Letters, 2019, 14(10): 104018. doi: 10.1088/1748-9326/ab41a6.
doi: 10.1088/1748-9326/ab41a6 |
[36] |
Li Y, Ding Y H, Liu Y X. Mechanisms for regional compound hot extremes in the mid-lower reaches of the Yangtze River[J]. International Journal of Climatology, 2021, 41(2): 1292-1304.
doi: 10.1002/joc.v41.2 |
[37] |
Luo M, Lau N C, Liu Z. Different mechanisms for daytime, nighttime, and compound heatwaves in Southern China[J]. Weather and Climate Extremes, 2022, 36: 100449. doi: 10.1016/j.wace.2022.100449.
doi: 10.1016/j.wace.2022.100449 |
[38] |
赵东升, 张家诚, 邓思琪, 等. 1960—2018年中国西南地区旱涝急转的时空变化特征[J]. 地理科学, 2021, 41(12): 2222-2231.
doi: 10.13249/j.cnki.sgs.2021.12.016 |
[Zhao Dongsheng, Zhang Jiacheng, Deng Siqi, et al. Spatio-temporal characteristics of drought-flood abrupt alternation in the Southwest China from 1960 to 2018. Scientia Geographica Sinica, 2021, 41(12): 2222-2231.]
doi: 10.13249/j.cnki.sgs.2021.12.016 |
|
[39] |
Anderson W B, Seager R, Baethgen W, et al. Synchronous crop failures and climate-forced production variability[J]. Science Advances, 2019, 5(7): eaaw1976. doi: 10.1126/sciadv.aaw1976.
doi: 10.1126/sciadv.aaw1976 |
[40] |
Qi W, Feng L, Yang H, et al. Increasing concurrent drought probability in global main crop production countries[J]. Geophysical Research Letters, 2022, 49(6): e2021GL097060. doi: 10.1029/2021GL097060.
doi: 10.1029/2021GL097060 |
[41] |
Lau W K M, Kim K M. The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes[J]. Journal of Hydrometeorology, 2012, 13(1): 392-403.
doi: 10.1175/JHM-D-11-016.1 |
[42] |
Steptoe H, Jones S E O, Fox H. Correlations between extreme atmospheric hazards and global teleconnections: Implications for multihazard resilience[J]. Reviews of Geophysics, 2018, 56(1): 50-78.
doi: 10.1002/rog.v56.1 |
[43] |
孙永刚, 孟雪峰, 仲夏, 等. 河套气旋发展东移对一次北京特大暴雨的触发作用[J]. 高原气象, 2014, 33(6): 1665-1673.
doi: 10.7522/j.issn.1000-0534.2014.00029 |
[Sun Yonggang, Meng Xuefeng, Zhong Xia, et al. Analysis of Hetao cyclone shifting eastward and producing rainstorm process in Beijing. Plateau Meteorology, 2014, 33(6): 1665-1673.]
doi: 10.7522/j.issn.1000-0534.2014.00029 |
|
[44] |
Hao Z C, Singh V P. Compound events under global warming: A dependence perspective[J]. Journal of Hydrologic Engineering, 2020, 25(9): 3120001. doi: 10.1061/(ASCE)HE.1943-5584.0001991.
doi: 10.1061/(ASCE)HE.1943-5584.0001991 |
[45] |
Ridder N N, Pitman A J, Westra S, et al. Global hotspots for the occurrence of compound events[J]. Nature Communications, 2020, 11: 5956. doi: 10.1038/s41467-020-20502-8.
doi: 10.1038/s41467-020-19639-3 pmid: 33235203 |
[46] | Sklar A. Fonctions de repartition a n dimensions et leursmarges[J]. Publications de l'Institut de Statistique de L'Universite de Paris, 1959, 8: 229-231. |
[47] | 郭生练, 闫宝伟, 肖义, 等. Copula函数在多变量水文分析计算中的应用及研究进展[J]. 水文, 2008, 28(3): 1-7. |
[Guo Shenglian, Yan Baowei, Xiao Yi, et al. Multivariate hydrological analysis and estimation. Journal of China Hydrology, 2008, 28(3): 1-7.] | |
[48] |
Hao Z C, Singh V P. Review of dependence modeling in hydrology and water resources[J]. Progress in Physical Geography: Earth and Environment, 2016, 40(4): 549-578.
doi: 10.1177/0309133316632460 |
[49] | 冯介玲, 李宁, 刘丽, 等. 基于混合Copula模型的灾害相关结构分析: 以内蒙古中部强沙尘暴为例[J]. 灾害学, 2019, 34(3): 216-220, 226. |
[Feng Jieling, Li Ning, Liu Li, et al. Dependence analysis of disaster based on mixed Copula model: A case study of the severe dust storm disaster in central Inner Mongolia. Journal of Catastrophology, 2019, 34(3): 216-220, 226.] | |
[50] | 夏军, 佘敦先, 杜鸿. 气候变化影响下极端水文事件的多变量统计模型研究[J]. 气候变化研究进展, 2012, 8(6): 397-402. |
[Xia Jun, She Dunxian, Du Hong. The multi-variable statistical models of extreme hydrological events under climate change. Climate Change Research, 2012, 8(6): 397-402.] | |
[51] | 刘章君, 郭生练, 许新发, 等. Copula函数在水文水资源中的研究进展与述评[J]. 水科学进展, 2021, 32(1): 148-159. |
[Liu Zhangjun, Guo Shenglian, Xu Xinfa, et al. Application of Copula functions in hydrology and water resources: A state-of-the-art review. Advances in Water Science, 2021, 32(1): 148-159.] | |
[52] | François B, Vrac M. Time of emergence of compound events: Contribution of univariate and dependence properties[J]. Natural Hazards and Earth System Sciences, 2023, 23(1): 21-44. |
[53] | 陈心池, 张利平, 闪丽洁, 等. 基于Copula函数的汉江中上游流域极端降雨洪水联合分布特征[J]. 长江流域资源与环境, 2015, 24(8): 1425-1433. |
[Chen Xinchi, Zhang Liping, Shan Lijie, et al. Joint distribution of the extreme rainfall and flood for the upper-middle reaches of the Hanjiang River based on Copula function. Resources and Environment in the Yangtze Basin, 2015, 24(8): 1425-1433.] | |
[54] |
Tosunoglu F, Gürbüz F, İspirli M N. Multivariate modeling of flood characteristics using Vine Copulas[J]. Environmental Earth Sciences, 2020, 79(19): 459. doi: 10.1007/s12665-020-09199-6.
doi: 10.1007/s12665-020-09199-6 |
[55] |
Weber P, Medina-Oliva G, Simon C, et al. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 671-682.
doi: 10.1016/j.engappai.2010.06.002 |
[56] |
Couasnon A, Sebastian A, Morales-Nápoles O. A Copula-based Bayesian network for modeling compound flood hazard from riverine and coastal interactions at the catchment scale: An application to the Houston ship channel, Texas[J]. Water, 2018, 10(9): 1190. doi: 10.3390/w10091190.
doi: 10.3390/w10091190 |
[57] |
Naseri K, Hummel M A. A Bayesian Copula-based nonstationary framework for compound flood risk assessment along US coastlines[J]. Journal of Hydrology, 2022, 610: 128005. doi: 10.1016/j.jhydrol.2022.128005.
doi: 10.1016/j.jhydrol.2022.128005 |
[58] |
Boers N, Goswami B, Rheinwalt A, et al. Complex networks reveal global pattern of extreme-rainfall teleconnections[J]. Nature, 2019, 566: 373-377.
doi: 10.1038/s41586-018-0872-x |
[59] |
de Michele C, Meroni V, Rahimi L, et al. Dependence types in a binarized precipitation network[J]. Geophysical Research Letters, 2020, 47(23): e2020GL090196. doi: 10.1029/2020GL090196.
doi: 10.1029/2020GL090196 |
[60] |
李双双, 杨赛霓, 刘宪锋, 等. 2008年中国南方低温雨雪冰冻灾害网络建模及演化机制研究[J]. 地理研究, 2015, 34(10): 1887-1896.
doi: 10.11821/dlyj201510007 |
[Li Shuangshuang, Yang Saini, Liu Xianfeng, et al. Network modeling and dynamic mechanisms of the severe cold surge, ice-snow events, and frozen disasters in Southern China in 2008. Geographical Research, 2015, 34(10): 1887-1896.]
doi: 10.11821/dlyj201510007 |
|
[61] |
李双双, 杨赛霓, 刘宪锋. 面向非过程的多灾种时空网络建模: 以京津冀地区干旱热浪耦合为例[J]. 地理研究, 2017, 36(8): 1415-1427.
doi: 10.11821/dlyj201708002 |
[Li Shuangshuang, Yang Saini, Liu Xianfeng. Spatiotemporal network modeling in concurrent heat waves and droughts in the Beijing-Tianjin-Hebei metropolitan region, China. Geographical Research, 2017, 36(8): 1415-1427.]
doi: 10.11821/dlyj201708002 |
|
[62] |
Zhang W, Luo M, Gao S, et al. Compound hydrometeorological extremes: Drivers, mechanisms and methods[J]. Frontiers in Earth Science, 2021, 9. doi: 10.3389/feart.2021.673495.
doi: 10.3389/feart.2021.673495 |
[63] |
Colle B A, Booth J F, Chang E K M. A review of historical and future changes of extratropical cyclones and associated impacts along the US east coast[J]. Current Climate Change Reports, 2015, 1(3): 125-143.
doi: 10.1007/s40641-015-0013-7 pmid: 32025470 |
[64] |
Danard M B, Dube S K, Gönnert G, et al. Storm surges from extra-tropical cyclones[J]. Natural Hazards, 2004, 32(2): 177-190.
doi: 10.1023/B:NHAZ.0000031312.98231.81 |
[65] |
Lin N, Marsooli R, Colle B A. Storm surge return levels induced by mid-to-late-twenty-first-century extratropical cyclones in the Northeastern United States[J]. Climatic Change, 2019, 154(1): 143-158.
doi: 10.1007/s10584-019-02431-8 |
[66] |
Martius O, Pfahl S, Chevalier C. A global quantification of compound precipitation and wind extremes[J]. Geophysical Research Letters, 2016, 43(14): 7709-7717.
doi: 10.1002/2016GL070017 |
[67] |
Do H X, Westra S, Leonard M, et al. Global-scale prediction of flood timing using atmospheric reanalysis[J]. Water Resources Research, 2020, 56(1): e2019WR024945. doi: 10.1029/2019WR024945.
doi: 10.1029/2019WR024945 |
[68] |
Dowdy A J, Catto J L. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences[J]. Scientific Reports, 2017, 7: 40359. doi: 10.1038/srep40359.
doi: 10.1038/srep40359 pmid: 28074909 |
[69] | Booth J F, Narinesingh V, Towey K L, et al. Storm surge, blocking, and cyclones: A compound hazards analysis for the Northeast United States[J]. Journal of Applied Meteorology and Climatology, 2021, 60(11): 1531-1544. |
[70] | Ridder N, de Vries H, Drijfhout S. The role of atmospheric rivers in compound events consisting of heavy precipitation and high storm surges along the Dutch coast[J]. Natural Hazards and Earth System Sciences, 2018, 18(12): 3311-3326. |
[71] |
Waliser D, Guan B. Extreme winds and precipitation during landfall of atmospheric rivers[J]. Nature Geoscience, 2017, 10(3): 179-183.
doi: 10.1038/NGEO2894 |
[72] |
Liu Q, Zhou T J, Mao H T, et al. Decadal variations in the relationship between the western Pacific subtropical high and summer heat waves in East China[J]. Journal of Climate, 2019, 32(5): 1627-1640.
doi: 10.1175/JCLI-D-18-0093.1 |
[73] |
Horton D E, Skinner C B, Singh D, et al. Occurrence and persistence of future atmospheric stagnation events[J]. Nature Climate Change, 2014, 4(8): 698-703.
doi: 10.1038/nclimate2272 |
[74] |
Screen J A, Simmonds I. Amplified mid-latitude planetary waves favour particular regional weather extremes[J]. Nature Climate Change, 2014, 4(8): 704-709.
doi: 10.1038/nclimate2271 |
[75] |
Miralles D G, Gentine P, Seneviratne S I, et al. Land-atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges[J]. Annals of the New York Academy of Sciences, 2019, 1436(1): 19-35.
doi: 10.1111/nyas.13912 pmid: 29943456 |
[76] |
Teuling A J, Seneviratne S I. Contrasting spectral changes limit albedo impact on land-atmosphere coupling during the 2003 European heat wave[J]. Geophysical Research Letters, 2008, 35(3). doi: 10.1029/2007GL032778.
doi: 10.1029/2007GL032778 |
[77] |
Feng S F, Hao Z C. Quantitative contribution of ENSO to precipitation-temperature dependence and associated compound dry and hot events[J]. Atmospheric Research, 2021, 260: 105695. doi: 10.1016/j.atmosres.2021.105695.
doi: 10.1016/j.atmosres.2021.105695 |
[78] |
Wu X Y, Hao Z C, Hao F H, et al. Influence of large-scale circulation patterns on compound dry and hot events in China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(4): e2020JD033918. doi: 10.1029/2020JD033918.
doi: 10.1029/2020JD033918 |
[79] |
Zhang W J, Mao W, Jiang F, et al. Tropical indo-Pacific compounding thermal conditions drive the 2019 Australian extreme drought[J]. Geophysical Research Letters, 2021, 48(2): e2020GL090323. doi: 10.1029/2020GL090323.
doi: 10.1029/2020GL090323 |
[80] |
Wu W Y, Leonard M. Impact of ENSO on dependence between extreme rainfall and storm surge[J]. Environmental Research Letters, 2019, 14(12): 124043. doi: 10.1088/1748-9326/ab59c2.
doi: 10.1088/1748-9326/ab59c2 |
[81] |
Ma F, Yuan X. More persistent summer compound hot extremes caused by global urbanization[J]. Geophysical Research Letters, 2021, 48(15): e2021GL093721. doi: 10.1029/2021GL093721.
doi: 10.1029/2021GL093721 |
[82] |
Wang J, Chen Y, Liao W L, et al. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities[J]. Nature Climate Change, 2021, 11(12): 1084-1089
doi: 10.1038/s41558-021-01196-2 |
[83] | Luo M, Lau N C. Increasing heat stress in urban areas of eastern China: Acceleration by urbanization[J]. Geophysical Research Letters, 2018, 45(23): 13060-13069. |
[84] |
Moftakhari H R, Salvadori G, AghaKouchak A, et al. Compounding effects of sea level rise and fluvial flooding[J]. PNAS, 2017, 114(37): 9785-9790.
doi: 10.1073/pnas.1620325114 pmid: 28847932 |
[85] |
Ward P J, Couasnon A, Eilander D, et al. Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries[J]. Environmental Research Letters, 2018, 13(8): 084012. doi: 10.1088/1748-9326/aad400.
doi: 10.1088/1748-9326/aad400 |
[86] |
Salvadori G, Durante F, De Michele C, et al. A multivariate Copula-based framework for dealing with hazard scenarios and failure probabilities[J]. Water Resources Research, 2016, 52(5): 3701-3721.
doi: 10.1002/2015WR017225 |
[87] |
陈子燊, 施伟勇, 路剑飞. 波高周期联合分布四种重现水平对比分析[J]. 热带海洋学报, 2018, 37(4): 18-23.
doi: 10.11978/2017116 |
[Chen Zishen, Shi Weiyong, Lu Jianfei. Comparative analysis on four recurrence levels of joint distribution of wave height and period. Journal of Tropical Oceanography, 2018, 37(4): 18-23.] | |
[88] | 方佳毅, 殷杰, 石先武, 等. 沿海地区复合洪水危险性研究进展[J]. 气候变化研究进展, 2021, 17(3): 317-328. |
[Fang Jiayi, Yin Jie, Shi Xianwu, et al. A review of compound flood hazard research in coastal areas. Climate Change Research, 2021, 17(3): 317-328.] | |
[89] | 黄强, 陈子燊. 基于二次重现期的多变量洪水风险评估[J]. 湖泊科学, 2015, 27(2): 352-360. |
[Huang Qiang, Chen Zishen. Multivariate flood risk assessment based on the secondary return period. Journal of Lake Sciences, 2015, 27(2): 352-360.]
doi: 10.18307/2015.0221 |
|
[90] |
Bevacqua E, Maraun D, Hobæk Haff I, et al. Multivariate statistical modelling of compound events via pair-Copula constructions: Analysis of floods in Ravenna (Italy)[J]. Hydrology and Earth System Sciences, 2017, 21(6): 2701-2723.
doi: 10.5194/hess-21-2701-2017 |
[91] |
Jiang C, Xiong L H, Yan L, et al. Multivariate hydrologic design methods under nonstationary conditions and application to engineering practice[J]. Hydrology and Earth System Sciences, 2019, 23(3): 1683-1704.
doi: 10.5194/hess-23-1683-2019 |
[92] |
Xu P C, Wang D, Wang Y K, et al. Time-varying Copula and average annual reliability-based nonstationary hazard assessment of extreme rainfall events[J]. Journal of Hydrology, 2021, 603: 126792. doi: 10.1016/j.jhydrol.2021.126792.
doi: 10.1016/j.jhydrol.2021.126792 |
[93] |
Read L K, Vogel R M. Reliability, return periods, and risk under nonstationarity[J]. Water Resources Research, 2015, 51(8): 6381-6398.
doi: 10.1002/2015WR017089 |
[94] | 王璐阳, 张敏, 温家洪, 等. 上海复合极端风暴洪水淹没模拟[J]. 水科学进展, 2019, 30(4): 546-555. |
[Wang Lu-yang, Zhang Min, Wen Jiahong, et al. Simulation of extreme compound coastal flooding in Shanghai. Advances in Water Science, 2019, 30(4): 546-555.] | |
[95] |
Saharia A M, Zhu Z D, Atkinson J F. Compound flooding from lake seiche and river flow in a freshwater coastal river[J]. Journal of Hydrology, 2021, 603: 126969. doi: 10.1016/j.jhydrol.2021.126969.
doi: 10.1016/j.jhydrol.2021.126969 |
[96] |
Hendry A, Haigh I D, Nicholls R J, et al. Assessing the characteristics and drivers of compound flooding events around the UK coast[J]. Hydrology and Earth System Sciences, 2019, 23(7): 3117-3139.
doi: 10.5194/hess-23-3117-2019 |
[97] |
Milly P C D, Betancourt J, Falkenmark M, et al. Stationarity is dead: Whither water management?[J]. Science, 2008, 319: 573-574.
doi: 10.1126/science.1151915 pmid: 18239110 |
[98] |
Sarhadi A, Ausín M C, Wiper M P. A new time-varying concept of risk in a changing climate[J]. Scientific Reports, 2016, 6: 35755. doi: 10.1038/srep35755.
doi: 10.1038/srep35755 pmid: 27762398 |
[1] | 蒋海兵, 李业锦. 京津冀地区制造业空间格局演化及其驱动因素[J]. 地理科学进展, 2021, 40(5): 721-735. |
[2] | 李倩, 俞海洋, 李婷, 龙爽, 邵威, 王瑛, 许映军. 京津冀地区台风危险性评估——基于Gumbel分布的分析[J]. 地理科学进展, 2018, 37(7): 933-945. |
[3] | 周侃, 樊杰, 刘汉初. 环渤海地区水污染物排放的时空格局及其驱动因素[J]. 地理科学进展, 2017, 36(2): 171-181. |
[4] | 杜国明, 匡文慧, 孟凡浩, 迟文峰, 陆灯盛. 巴西土地利用/覆盖变化时空格局及驱动因素[J]. 地理科学进展, 2015, 34(1): 73-82. |
[5] | 廖谌婳, 封志明, 李鹏, 张景华. 中南半岛森林覆被变化研究进展[J]. 地理科学进展, 2014, 33(6): 853-864. |
[6] | 兰恒星, 周成虎, 高星, 程维明, 王治华, 杨志华, 李郎平, 伍宇明. 四川雅安芦山地震灾区次生地质灾害评估及对策建议[J]. 地理科学进展, 2013, 32(4): 499-504. |
[7] | 毛小岗, 宋金平, 杨鸿雁, 赵倩. 2000-2010年北京城市公园空间格局变化[J]. 地理科学进展, 2012, 31(10): 1295-1306. |
[8] | 邵景安,李阳兵,魏朝富,谢德体. 重庆岩溶区景观格局特征分析[J]. 地理科学进展, 2006, 25(5): 31-40. |
|