地理科学进展 ›› 2023, Vol. 42 ›› Issue (2): 353-363.doi: 10.18306/dlkxjz.2023.02.012
贠宜含1,2(), 张明波1, 伍宇明1,*(
), 姚佳明1
收稿日期:
2022-02-25
修回日期:
2022-09-09
出版日期:
2023-02-28
发布日期:
2023-02-24
通讯作者:
* 伍宇明(1989— ),男,北京人,博士,副研究员,研究方向为地理信息系统技术与应用。E-mail: wuym@lreis.ac.cn作者简介:
贠宜含(1995— ),女,河南人,硕士生,主要从事地质灾害与地理信息科学研究。E-mail: phoebeyyh97@gmail.com
基金资助:
YUN Yihan1,2(), ZHANG Mingbo1, WU Yuming1,*(
), YAO Jiaming1
Received:
2022-02-25
Revised:
2022-09-09
Online:
2023-02-28
Published:
2023-02-24
Supported by:
摘要:
河流对岸坡的侵蚀作用是滑坡失稳的重要因素之一,特别是在中国黄土地区。因此,探讨河流水位的季节性变化对黄土边坡稳定性的影响规律,对早期黄土滑坡灾害预警具有重要作用。论文以甘肃省天水市清泉村滑坡为例,分析5年内沿岸边坡形变速率与季节性水位变化之间的关系。基于SBAS-InSAR技术获取滑坡时序形变信息,借助MNDWI与DEM获取边坡底部时序水位信息,并结合GPM降雨数据进行相关性分析,研究发现随着降雨增多、河流水位的上涨,清泉村滑坡的形变速率明显增大,在夏季时滑坡形变量增长较快,并且边坡形变相较于水位季节变化具有一定的滞后性;经相关性分析,得出水位与滑坡形变的相关性系数为0.46,降雨与滑坡形变的相关性系数为0.39,表明清泉村滑坡的形变速率与水位变化更相关。因此,河流的季节性变化对滑坡形变速率具有一定影响,进而造成河流对沿岸滑坡的侵蚀作用呈现出季节性变化。研究揭示的黄土滑坡与河流水位的季节性变化关系,对揭示河岸边坡的演化过程、滑坡识别与灾害防治具有重要意义。
贠宜含, 张明波, 伍宇明, 姚佳明. 基于时序遥感影像的黄土滑坡形变与河流水位关系研究——以天水市清泉村滑坡为例[J]. 地理科学进展, 2023, 42(2): 353-363.
YUN Yihan, ZHANG Mingbo, WU Yuming, YAO Jiaming. Relationship between loess landslide deformation and river water level based on time series remote sensing images: A case study of the Qingquan Village landslide in Tianshui City[J]. PROGRESS IN GEOGRAPHY, 2023, 42(2): 353-363.
[1] | 张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(4): 530-540. |
[Zhang Mao-sheng, Li Tonglu. Triggering factors and forming mechanism of loess landslides. Journal of Engineering Geology, 2011, 19(4): 530-540.] | |
[2] |
崔鹏. 中国山地灾害研究进展与未来应关注的科学问题[J]. 地理科学进展, 2014, 33(2): 145-152.
doi: 10.11820/dlkxjz.2014.02.001 |
[Cui Peng. Progress and prospects in research on mountain hazards in China. Progress in Geography, 2014, 33(2): 145-152.]
doi: 10.11820/dlkxjz.2014.02.001 |
|
[3] |
Leng Y Q, Peng J B, Wang Q Y, et al. A fluidized landslide occurred in the Loess Plateau: A study on loess landslide in South Jingyang tableland[J]. Engineering Geology, 2018, 236: 129-136.
doi: 10.1016/j.enggeo.2017.05.006 |
[4] | 彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 26(5): 714-730. |
[Peng Jianbing, Wang Qiyao, Zhuang Jianqi, et al. Dynamic formation mechanism of landslide disaster on the Loess Plateau. Journal of Geomechanics, 2020, 26(5): 714-730.] | |
[5] | 廖红建, 盛谦, 高石夯, 等. 库水位下降对滑坡体稳定性的影响[J]. 岩石力学与工程学报, 2005, 24(19): 3454-3458. |
[Liao Hongjian, Sheng Qian, Gao Shihang, et al. Influence of drawdown of reservoir water level on landslide stability. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3454-3458.] | |
[6] | 张茂省, 胡炜, 孙萍萍, 等. 黄土水敏性及水致黄土滑坡研究现状与展望[J]. 地球环境学报, 2016, 7(4): 323-334. |
[Zhang Maosheng, Hu Wei, Sun Pingping, et al. Advances and prospects of water sensitivity of loess and the induced loess landslides. Journal of Earth Environment. Journal of Earth Environment, 2016, 7(4): 323-334.] | |
[7] | 孙萍萍, 张茂省, 冯立, 等. 黄土水敏性及其时空分布规律[J]. 西北地质, 2019, 52(2): 117-124. |
[Sun Pingping, Zhang Maosheng, Feng Li, et al. Water sensitivity of loess and its spatial -temporal distribution on the loess plateau. Northwestern Geology, 2019, 52(2): 117-124.] | |
[8] | 王阿丹. 延安地区侵蚀作用导致的黄土滑坡形成机理研究[D]. 西安: 长安大学, 2012. |
[Wang A'dan. Study on mechanism of loess landslides caused by erosion in Yan'an District. Xi'an, China: Chang'an University, 2012.] | |
[9] | 刘文红. 黄土高原滑坡发育背景与成灾模式研究[D]. 西安: 长安大学, 2016. |
[Liu Wenhong. Study on the background and disaster modes of landslide on Loess Plateau. Xi'an, China: Chang'an University, 2016.] | |
[10] | 袁湘秦, 赵法锁, 段钊. 河流作用诱发黄土滑坡机理[J]. 煤田地质与勘探, 2018, 46(4): 154-160. |
[Yuan Xiangqin, Zhao Fasuo, Duan Zhao. Mechanism of loess landslide induced by river action. Coal Geology & Exploration, 2018, 46(4): 154-160.] | |
[11] | 张吉宏, 段钊, 唐皓. 蠕变对河流侧蚀型黄土滑坡影响的数值模拟[J]. 人民黄河, 2020, 42(2): 142-146. |
[Zhang Jihong, Duan Zhao, Tang Hao. Numerical simulation of the effect of creep on loess landslide caused by lateral river erosion. Yellow River, 2020, 42(2): 142-146.] | |
[12] |
Cascini L, Fornaro G, Peduto D. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales[J]. Engineering Geology, 2010, 112: 29-42.
doi: 10.1016/j.enggeo.2010.01.003 |
[13] |
Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
doi: 10.1109/TGRS.2002.803792 |
[14] | 安炳琪, 罗海滨, 丁海勇, 等. 基于SBAS-InSAR技术的西宁地表形变监测[J]. 遥感技术与应用, 2021, 36(4): 838-846. |
[An Bingqi, Luo Haibin, Ding Haiyong, et al. Monitoring of Surface deformation in Xining based on SBAS-InSAR. Remote Sensing Technology and Application, 2021, 36(4): 838-846.] | |
[15] |
Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.
doi: 10.1109/36.868878 |
[16] | 冯文凯, 顿佳伟, 易小宇, 等. 基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析[J]. 工程地质学报, 2020, 28(2): 384-393. |
[Feng Wenkai, Dun Jiawei, Yi Xiaoyu, et al. Deformation analysis of Woda Village old landslide in Jinsha River Basin using SBAS-InSAR technology. Journal of Engineering Geology, 2020, 28(2): 384-393.] | |
[17] | 姚佳明, 姚鑫, 刘星洪, 等. InSAR技术的天水市活动性滑坡灾害识别与分析[J]. 测绘科学, 2022, 47(1): 121-132. |
[Yao Jiaming, Yao Xin, Liu Xinghong, et al. Identification and analysis of active landslide disaster in Tian-shui City using InSAR technology. Science of Surveying and Mapping, 2022, 47(1): 121-132.] | |
[18] |
宋森森, 贾振红, 杨杰, 等. 结合OSTU阈值法的最小生成树图像分割算法[J]. 计算机工程与应用, 2019, 55(9): 178-183.
doi: 10.3778/j.issn.1002-8331.1801-0447 |
[Song Sensen, Jia Zhenhong, Yang Jie, et al. Image segmentation algorithm of minimum spanning tree combined with OSTU threshold method. Computer Engineering and Applications, 2019, 55(9): 178-183.]
doi: 10.3778/j.issn.1002-8331.1801-0447 |
|
[19] | 赵紫薇. 基于OSTU算法利用新型水体指数进行Landsat数据自适应阈值水体自动提取研究[J]. 测绘与空间地理信息, 2016, 39(9): 57-60. |
[Zhao Ziwei. A new water index extracting water information automatically from landsat based on OSTU. Geomatics & Spatial Information Technology, 2016, 39(9): 57-60.] | |
[20] |
周晗, 叶虎平, 魏显虎, 等. 基于Sentinel-1/2的水体提取方法对比研究: 以斯里兰卡小型水体为例[J]. 中国科学院大学学报, 2019, 36(6): 794-802.
doi: 10.7523/j.issn.2095-6134.2019.06.010 |
[Zhou Han, Ye Huping, Wei Xianhu, et al. Comparative study on water extraction methods based on Sentinel-1/2: A case study of small water body in Sri Lanka. Journal of University of Chinese Academy of Sciences, 2019, 36(6): 794-802.]
doi: 10.7523/j.issn.2095-6134.2019.06.010 |
|
[21] | 王大钊, 王思梦, 黄昌. Sentinel-2和Landsat 8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019, 31(3): 157-165. |
[Wang Dazhao, Wang Simeng, Huang Chang. Comparison of Sentinel-2 imagery with Landsat 8 imagery for surface water extraction using four common water indexes. Remote Sensing for Land & Resources, 2019, 31(3): 157 -165.] | |
[22] | 姚杰鹏, 杨磊库, 陈探, 等. 基于Sentinel-1, 2和Landsat 8时序影像的鄱阳湖湿地连续变化监测研究[J]. 遥感技术与应用, 2021, 36(4): 760-776. |
[Yao Jiepeng, Yang Leiku, Chen Tan, et al. Consecutive monitoring of the Poyang Lake wetland by integrating sentine l-2 with sentinel-1 and landsat 8 data. Remote Sensing Technology and Application, 2021, 36(4): 760-776.] | |
[23] |
Cordeiro M C R, Martinez J M, Peña-Luque S. Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors[J]. Remote Sensing of Environment, 2021, 253: 112209. doi: 10.1016/j.rse.2020.112209.
doi: 10.1016/j.rse.2020.112209 |
[24] |
Yao J M, Lan H X, Li L P, et al. Characteristics of a rapid landsliding area along Jinsha River revealed by multi-temporal remote sensing and its risks to Sichuan-Tibet railway[J]. Landslides, 2022, 19(3): 703-718.
doi: 10.1007/s10346-021-01790-7 |
[25] |
Dong S C, Samsonov S, Yin H W, et al. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method[J]. Environmental Earth Sciences, 2014, 72(3): 677-691.
doi: 10.1007/s12665-013-2990-y |
[26] |
Cianflone G, Tolomei C, Brunori C A, et al. Landslides and subsidence assessment in the Crati Valley (Southern Italy) using InSAR data[J]. Geosciences, 2018, 8(2): 67. doi: 10.3390/geosciences8020067.
doi: 10.3390/geosciences8020067 |
[27] |
Galve J, Pérez-peña J, Azañón J, et al. Evaluation of the SBAS InSAR service of the European space agency's Geohazard Exploitation Platform (GEP)[J]. Remote Sensing, 2017, 9(12): 1291-1312.
doi: 10.3390/rs9121291 |
[28] | 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5): 589-595. |
[Xu Hanqiu. A study on information extraction of water body with the modified normalized difference water index(MNDWI). Journal of Remote Sensing, 2005, 9(5): 589-595.] | |
[29] | 刘成, 王丹丽, 李笑梅. 用混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J]. 遥感技术与应用, 2003, 18(2): 95-98. |
[Liu Cheng, Wang Danli, Li Xiaomei. Extracting clay alteration information of medium vegetation covered areas based on linear model of spectral mixture analysis. Remote Sensing Technology and Application, 2003, 18(2): 95-98.] | |
[30] | 金鑫, 柯长青. 基于混合像元分解的天山典型地区冰雪变化监测[J]. 国土资源遥感, 2012, 24(4): 146-151. |
[Jin Xin, Ke Changqing. Monitoring of snow cover changes in Tianshan Mountains based on mixed pixel decomposition. Remote Sensing for Land & Resources, 2012, 24(4): 146-151.] | |
[31] | 周永健, 冯文凯, 易小宇, 等. 木鱼包滑坡变形与库水位相关性定量化分析[J]. 科学技术与工程, 2021, 21(27): 11544-11550. |
[Zhou Yongjian, Feng Wenkai, Yi Xiaoyu, et al. Quantitative analysis of correlation between deformation and reservoir water level of Muyubao landslide. Science Technology and Engineering, 2021, 21(27): 11544-11550.] | |
[32] | 尚敏, 廖芬, 马锐, 等. 白家包滑坡变形与库水位、降雨相关性定量化分析研究[J]. 工程地质学报, 2021, 29(3): 742-750. |
[Shang Min, Liao Fen, Ma Rui, et al. Quantitative correlation analysis on deformation of Baijiabao landslide between rainfall and reservoir water level. Journal of Engineering Geology, 2021, 29(3): 742-750.] | |
[33] | 慕焕东, 邓亚虹, 李荣建. 干湿循环对地裂缝带黄土抗剪强度影响研究[J]. 工程地质学报, 2018, 26(5): 1131-1138. |
[Mu Huandong, Deng Yahong, Li Rongjian. Experimental study on strength characteristics of loess at ground fissures in Xi'an under action of dry and wet cycle. Journal of Engineering Geology, 2018, 26(5): 1131-1138.] | |
[34] | 李保雄, 苗天德. 黄土抗剪强度的水敏感性特征研究[J]. 岩石力学与工程学报, 2006, 25(5): 1003-1008. |
[Li Baoxiong, Miao Tiande. Research on water sensitivity of loess shear strength. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 1003-1008.] | |
[35] | 朱赛楠, 殷跃平, 黄波林, 等. 三峡库区大型单斜顺层新生滑坡变形特征与失稳机理研究[J]. 工程地质学报, 2021, 29(3): 657-667. |
[Zhu Sainan, Yin Yueping, Huang Bolin, et al. Deformation characteristics and instability mechanism of large monoclinal layered neogenic bedrock landslide in Three Gorges Reservoir area. Journal of Engineering Geology, 2021, 29(3): 657-667.] | |
[36] | 周永娟, 仇江啸, 王效科, 等. 三峡库区消落带崩塌滑坡脆弱性评价[J]. 资源科学, 2010, 32(7): 1301-1307. |
[Zhou Yongjuan, Qiu Jiangxiao, Wang Xiaoke, et al. A vulnerability assessment of landslide in water-level-fluctuation zones of the Three Gorges Reservoir. Resources Science, 2010, 32(7):1301-1307.] | |
[37] | 张鹏, 张森林, 黄波林, 等. 岸坡消落带岩体劣化的新生型滑坡(崩塌)隐患演化模式研究[J]. 工程地质学报, 2021, 29(5):1416-1426. |
[Zhang Peng, Zhang Senlin, Huang Bolin, et al. Study on the evolution model of neogenic landslide (collapse) hazards in rock mass of hydro- fluctuation belt. Journal of Engineering Geology, 2021, 29(5): 1416-1426.] | |
[38] |
Song K, Wang F W, Yi Q L, et al. Landslide deformation behavior influenced by water level fluctuations of the Three Gorges Reservoir (China)[J]. Engineering Geology, 2018, 247: 58-68.
doi: 10.1016/j.enggeo.2018.10.020 |
[39] | 赵萌. 三峡库区黄土坡滑坡滑带土特性及失稳机理研究[D]. 武汉: 中国地质大学, 2021. |
[Zhao Meng. Study on characteristics of slip zone soil and failure mechanism of Huangtupo landslide in Three Gorges Reservoir area. Wuhan, China: China University of Geosciences, 2021.] | |
[40] | 邓华锋, 肖瑶, 方景成, 等. 干湿循环作用下岸坡消落带土体抗剪强度劣化规律及其对岸坡稳定性影响研究[J]. 岩土力学, 2017, 38(9): 2629-2638. |
[Deng Huafeng, Xiao Yao, Fang Jingcheng, et al. Shear strength degradation and slope stability of soils at hydro-fluctuation belt of river bank slope during drying-wetting cycle. Rock and Soil Mechanics, 2017, 38(9): 2629-2638.] |
[1] | 赵鹏军, 刘迪. 中国小城镇基础设施与社会经济发展的关联分析[J]. 地理科学进展, 2018, 37(9): 1245-1256. |
[2] | 汪权方, 晏群, 徐慧, 王新生, 张景雄, 李兆华, 陈志杰. 基于灰色关联度的AHP权重矩阵构建方法改进及在农地评价中的应用[J]. 地理科学进展, 2016, 35(10): 1249-1257. |
[3] | 杨莉1,2|杨德刚1|张豫芳1,2|乔旭宁1,2|唐宏1,2|王国刚1,2. 新疆区域基础设施与经济耦合的关联分析[J]. 地理科学进展, 2009, 28(3): 345-352. |
[4] | 吴凯, 袁璋, 许越先. 河北省粮食生产发展趋势及其地区差异[J]. 地理科学进展, 2003, 22(5): 499-506. |
[5] | 章予舒, 王立新, 张红旗, 李香云. 疏勒河流域土地利用变化驱动因素分析——以安西县为例[J]. 地理科学进展, 2003, 22(3): 270-278. |
[6] | 李茂. 河南省耕地和粮食灰色关联分析[J]. 地理科学进展, 2002, 21(2): 163-172. |
|