地理科学进展 ›› 2023, Vol. 42 ›› Issue (1): 145-160.doi: 10.18306/dlkxjz.2023.01.012
姚飛1,2(), 杨秀芹1,2,*(
), 刘慕嘉1,2, 张余庆3, 李华1,2
收稿日期:
2022-05-26
修回日期:
2022-08-24
出版日期:
2023-01-28
发布日期:
2023-03-28
通讯作者:
*杨秀芹(1981— ),女,山东聊城人,博士,副教授,硕士生导师,研究方向为流域水文气候与水资源规划与管理。E-mail: young_sd@nuist.edu.cn作者简介:
姚飛(1993— ),男,四川攀枝花人,硕士生,研究方向为流域水文气候与水资源规划与管理。E-mail: yaofei@nuist.edu.cn
基金资助:
YAO Fei1,2(), YANG Xiuqin1,2,*(
), LIU Mujia1,2, ZHANG Yuqing3, LI Hua1,2
Received:
2022-05-26
Revised:
2022-08-24
Online:
2023-01-28
Published:
2023-03-28
Supported by:
摘要:
在全球气候变化背景下,近60 a江淮流域梅雨特征量及梅雨期分级降水的时空变化特征还不明晰。论文采用江淮流域1961—2020年239个气象站逐日降水、气温和NCEP/NCAR再分析资料识别梅雨过程,研究梅雨入出梅日期等特征量及梅雨期不同量级的雨日数等指标的时空特征,计算城市化对梅雨期强降水的贡献。结果表明:Ⅰ区(江南区)平均入出梅最早,Ⅱ区(长江中下游区)次之,Ⅲ区(江淮区)入出梅最晚,梅雨期长度依次为30、30和24 d,入出梅日和梅雨期长度趋势性均不明显。Ⅰ区平均梅雨雨强最大(367.6 mm),Ⅱ区次之(298.4 mm),Ⅲ区最小(253.5 mm);Ⅱ区梅雨雨强显著增加、平均梅雨强度指数最大,最易发生暴力梅,Ⅲ区梅雨强度指数变化最剧烈。江淮流域梅雨量Ⅰ、Ⅱ区中部较大,Ⅰ区雨日数最多,Ⅱ区次之,Ⅲ区最少。梅雨期小雨日数最多、降水发生率最高,中雨、大雨和暴雨依次减少。绝大多数站点小雨、中雨日数趋势性不明显,Ⅱ区中东部大雨、暴雨日数显著增加。绝大多数站点大雨、暴雨降水发生率趋势性不明显,Ⅱ区较多站点小雨、中雨发生率显著下降是其东部梅雨期降水发生率显著减少的原因。暴雨量占梅雨量比例最大、降水贡献率也最大,大雨、中雨和小雨依次减小。Ⅰ、Ⅱ区东部站点大雨、暴雨量显著增加是该区梅雨量显著增加的原因。绝大部分站点的不同量级降水贡献率趋势性不明显,只有Ⅱ区中东部17个站点小雨、中雨贡献率显著降低。城市化加剧了强降水指标上升,城市化对R95P和R99P的贡献率分别为10.59%和17.39%。研究结果可为江淮流域梅雨期暴雨洪涝事件预警、水旱灾害防御、水资源调度提供参考。
姚飛, 杨秀芹, 刘慕嘉, 张余庆, 李华. 江淮流域梅雨过程识别及梅雨期分级降水时空特征[J]. 地理科学进展, 2023, 42(1): 145-160.
YAO Fei, YANG Xiuqin, LIU Mujia, ZHANG Yuqing, LI Hua. Identification of Meiyu process and spatiotemporal characteristics of different precipitation levels during the Meiyu period over the Yangtze-Huai River Basin[J]. PROGRESS IN GEOGRAPHY, 2023, 42(1): 145-160.
[1] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 梅雨监测指标: GB/T 33671—2017[S]. 北京: 中国标准出版社, 2017. |
[General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. Meiyu monitoring index: GB/T 33671-2017. Beijing: Standards Press of China, 2017. ] | |
[2] |
Ding Y H, Liang P, Liu Y J, et al. Multi-scale variability of Meiyu and its prediction: A new review[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(7): e2019JD031496. doi: 10.1029/2019JD031496.
doi: 10.1029/2019JD031496 |
[3] |
黄媛, 李蓓蓓, 李忠明. 基于日记的历史气候变化研究综述[J]. 地理科学进展, 2013, 32(10): 1545-1554.
doi: 10.11820/dlkxjz.2013.10.012 |
[Huang Yuan, Li Beibei, Li Zhongming. Review of climate reconstruction based on ancient diary. Progress in Geography, 2013, 32(10): 1545-1554. ]
doi: 10.11820/dlkxjz.2013.10.012 |
|
[4] | 刘芸芸, 丁一汇. 2020年超强梅雨特征及其成因分析[J]. 气象, 2020, 46(11): 1393-1404. |
[Liu Yunyun, Ding Yihui. Characteristics and possible causes for the extreme Meiyu in 2020. Meteorological Monthly, 2020, 46(11): 1393-1404. ] | |
[5] |
Zhou Z Q, Xie S P, Zhang R. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions[J]. PNAS, 2021, 118(12): e2022255118. doi: 10.1073/pnas.2022255118.
doi: 10.1073/pnas.2022255118 |
[6] | 梁萍, 陈丽娟, 丁一汇, 等. 长江梅雨的长期变率与海洋的关系及其可预报性研究[J]. 气象学报, 2018, 76(3): 379-393. |
[Liang Ping, Chen Lijuan, Ding Yihui, et al. Relationship between long-term variability of Meiyu over the Yangtze River and ocean and Meiyu's predictability study. Acta Meteorologica Sinica, 2018, 76(3): 379-393. ] | |
[7] | 朱乾根. 天气学原理和方法[M]. 北京: 气象出版社, 2007: 320-321. |
[Zhu Qiangeng. Synoptic principles and methods. Beijing, China: Meteorological Press, 2007: 320-321. ] | |
[8] | 周平, 周玉良, 金菊良, 等. 基于梅雨监测指标的安徽江淮地区梅雨过程识别[J]. 水利水运工程学报, 2020(6): 9-15. |
[Zhou Ping, Zhou Yuliang, Jin Juliang, et al. Meiyu identification of Yangtze-Huaihe region in Anhui Province based on Meiyu monitoring indices. Hydro-Science and Engineering, 2020(6): 9-15. ] | |
[9] | 丁一汇, 柳俊杰, 孙颖, 等. 东亚梅雨系统的天气—气候学研究[J]. 大气科学, 2007, 31(6): 1082-1101. |
[Ding Yihui, Liu Junjie, Sun Ying, et al. A study of the synoptic-climatology of the Meiyu system in East Asia. Chinese Journal of Atmospheric Sciences, 2007, 31(6): 1082-1101. ] | |
[10] | 梁萍, 丁一汇. 东亚梅雨季节内振荡的气候特征[J]. 气象学报, 2012, 70(3): 418-435. |
[Liang Ping, Ding Yihui. Climatologic characteristics of the intraseasonal oscillation of East Asian Meiyu. Acta Meteorologica Sinica, 2012, 70(3): 418-435. ] | |
[11] |
Dong L L, Xu X D, Zhao T L, et al. Linkage between moisture transport over the Yangtze River Basin and a critical area of the Tibetan Plateau during the Meiyu[J]. Climate Dynamics, 2019, 53(5/6): 2643-2662.
doi: 10.1007/s00382-019-04648-w |
[12] |
Si D, Ding Y H. Decadal change in the correlation pattern between the Tibetan Plateau winter snow and the East Asian summer precipitation during 1979-2011[J]. Journal of Climate, 2013, 26(19): 7622-7634.
doi: 10.1175/JCLI-D-12-00587.1 |
[13] |
Ding Y H. The variability of the Asian summer monsoon[J]. Journal of the Meteorological Society of Japan Ser II, 2007, 85B: 21-54.
doi: 10.2151/jmsj.85B.21 |
[14] | 丁一汇, 司东, 柳艳菊, 等. 论东亚夏季风的特征、驱动力与年代际变化[J]. 大气科学, 2018, 42(3): 533-558. |
[Ding Yihui, Si Dong, Liu Yanju, et al. On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 533-558. ] | |
[15] |
Si D, Ding Y H. Oceanic forcings of the interdecadal variability in East Asian summer rainfall[J]. Journal of Climate, 2016, 29(21): 7633-7649.
doi: 10.1175/JCLI-D-15-0792.1 |
[16] |
Ding Y H, Wang Z Y, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences[J]. International Journal of Climatology, 2008, 28(9): 1139-1161.
doi: 10.1002/joc.1615 |
[17] | 江志红, 何金海, 李建平, 等. 东亚夏季风推进过程的气候特征及其年代际变化[J]. 地理学报, 2006, 61(7): 675-686. |
[Jiang Zhihong, He Jinhai, Li Jianping, et al. Northerly advancement characteristics of the East Asian summer monsoon with Its interdecadal variations. Acta Geographica Sinica, 2006, 61(7): 675-686. ]
doi: 10.11821/xb200607001 |
|
[18] |
扈海波. 城市暴雨积涝灾害风险突增效应研究进展[J]. 地理科学进展, 2016, 35(9): 1075-1086.
doi: 10.18306/dlkxjz.2016.09.003 |
[Hu Haibo. Research progress of surging urban flood risks. Progress in Geography, 2016, 35(9): 1075-1086. ]
doi: 10.18306/dlkxjz.2016.09.003 |
|
[19] | 徐群. 121年梅雨演变中的近期强年代际变化[J]. 水科学进展, 2007, 18(3): 327-335. |
[Xu Qun. Recent strong decadal change of Meiyu in 121 years. Advances in Water Science, 2007, 18(3): 327-335. ] | |
[20] | 赵俊虎, 陈丽娟, 熊开国. 基于新监测指标的江南入梅早晚的气候特征及影响系统分析[J]. 气象学报, 2018, 76(5): 680-698. |
[Zhao Junhu, Chen Lijuan, Xiong Kaiguo. Climate characteristics and influential systems of Meiyu to the south of the Yangtze River based on the new monitoring rules. Acta Meteorologica Sinica, 2018, 76(5): 680-698. ] | |
[21] | 胡娅敏, 丁一汇, 廖菲. 江淮地区梅雨的新定义及其气候特征[J]. 大气科学, 2008, 32(1): 101-112. |
[Hu Yamin, Ding Yihui, Liao Fei. A study of updated definition and climatological characters of Meiyu season in the Yangtze-Huaihe region. Chinese Journal of Atmospheric Sciences, 2008, 32(1): 101-112. ] | |
[22] | 姚学祥, 王秀文, 李月安. 非典型梅雨与典型梅雨对比分析[J]. 气象, 2004, 30(11): 38-42. |
[Yao Xuexiang, Wang Xiuwen, Li Yue'an. Comparison analysis of non-typical and typical Meiyu. Meteorological Monthly, 2004, 30(11): 38-42. ] | |
[23] | 陈旭, 李栋梁. 新标准下江淮梅雨特征的分析[J]. 气象科学, 2016, 36(2): 165-175. |
[Chen Xu, Li Dongliang. The features of Meiyu under the new standard. Journal of the Meteorological Sciences, 2016, 36(2): 165-175. ] | |
[24] | 罗小杰. 新标准下梅雨特征量的时间演变及异常梅年环流特征分析[D]. 上海: 华东师范大学, 2017. |
[Luo Xiaojie. The analysis of temporal evolution and anomalous circulation characteristics of Meiyu under the new standard. Shanghai, China: East China Normal University, 2017. ] | |
[25] | 吴娟, 梁萍, 林荷娟, 等. 太湖流域梅雨的划分及其典型年异常成因分析[J]. 湖泊科学, 2021, 33(1): 255-265. |
[Wu Juan, Liang Ping, Lin Hejuan, et al. Meiyu determination and causes of typical abnormal Meiyu years in Taihu Basin. Journal of Lake Sciences, 2021, 33(1): 255-265. ]
doi: 10.18307/2021.0118 |
|
[26] | 牛若芸, 周兵. 2019年江淮流域梅雨异常特征及成因分析[J]. 气象, 2021, 47(11): 1347-1358. |
[Niu Ruoyun, Zhou Bing. Analysis of abnormal characteristics and causes of Meiyu over the Yangtze-Huaihe River Basin in 2019. Meteorological Monthly, 2021, 47(11): 1347-1358. ] | |
[27] |
Zhou Y L, Zuo Y L, Zhang Y L, et al. Identification and characteristics analysis of Meiyu in Anhui Province based on the national standard of Meiyu monitoring indices[J]. Hydrology Research, 2021, 52(5): 975-989.
doi: 10.2166/nh.2021.042 |
[28] | 田红, 程智, 谢五三, 等. 2020年安徽梅雨异常特征及预测前兆信号分析[J]. 暴雨灾害, 2020, 39(6): 564-570. |
[Tian Hong, Cheng Zhi, Xie Wusan, et al. Analysis on the characteristics of Meiyu anomaly and prediction precursor signal in Anhui Province in 2020. Torrential Rain and Disasters, 2020, 39(6): 564-570. ] | |
[29] | 肖莺, 杜良敏, 高雅琦. 2020年湖北梅雨异常特征及成因分析[J]. 暴雨灾害, 2020, 39(6): 571-577. |
[Xiao Ying, Du Liangmin, Gao Yaqi. Characteristics and cause analysis of Meiyu anomaly over Hubei Province in 2020. Torrential Rain and Disasters, 2020, 39(6): 571-577. ] | |
[30] |
Qian Y, Chakraborty T C, Li J F, et al. Urbanization impact on regional climate and extreme weather: Current understanding, uncertainties, and future research directions[J]. Advances in Atmospheric Sciences, 2022, 39(6): 819-860.
doi: 10.1007/s00376-021-1371-9 |
[31] | 胡庆芳, 张建云, 王银堂, 等. 城市化对降水影响的研究综述[J]. 水科学进展, 2018, 29(1): 138-150. |
[Hu Qingfang, Zhang Jianyun, Wang Yintang, et al. A review of urbanization impact on precipitation. Advances in Water Science, 2018, 29(1): 138-150. ] | |
[32] |
Sun Y, Zhang X B, Ding Y H, et al. Understanding human influence on climate change in China[J]. National Science Review, 2021, 9(3): nwab113. doi: 10.1093/nsr/nwab113.
doi: 10.1093/nsr/nwab113 |
[33] |
Yu X J, Gu X H, Kong D D, et al. Asymmetrical shift toward less light and more heavy precipitation in an urban agglomeration of east China: Intensification by urbanization[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097046. doi: 10.1029/2021GL097046.
doi: 10.1029/2021GL097046 |
[34] |
Li X, Zhang K, Gu P R, et al. Changes in precipitation extremes in the Yangtze River basin during 1960-2019 and the association with global warming, ENSO, and local effects[J]. Science of the Total Environment, 2021, 760: 144244. doi: 10.1016/j.scitotenv.2020.144244.
doi: 10.1016/j.scitotenv.2020.144244 |
[35] |
Liang P, Ding Y H. The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916-2014[J]. Advances in Atmospheric Sciences, 2017, 34(3): 321-334.
doi: 10.1007/s00376-016-6120-0 |
[36] |
顾西辉, 张强, 孔冬冬. 中国极端降水事件时空特征及其对夏季温度响应[J]. 地理学报, 2016, 71(5): 718-730.
doi: 10.11821/dlxb201605002 |
[Gu Xihui, Zhang Qiang, Kong Dongdong. Spatiotemporal patterns of extreme precipitation with their responses to summer temperature. Acta Geographica Sinica, 2016, 71(5): 718-730. ]
doi: 10.11821/dlxb201605002 |
|
[37] |
张利平, 杜鸿, 夏军, 等. 气候变化下极端水文事件的研究进展[J]. 地理科学进展, 2011, 30(11): 1370-1379.
doi: 10.11820/dlkxjz.2011.11.006 |
[Zhang Liping, Du Hong, Xia Jun, et al. Progress in the study of extreme hydrologic events under climate change. Progress in Geography, 2011, 30(11): 1370-1379. ]
doi: 10.11820/dlkxjz.2011.11.006 |
|
[38] | 孙军, 张福青. 中国日极端降水和趋势[J]. 中国科学: 地球科学, 2017, 47(12): 1469-1482. |
[Sun Jun,Zhang Fuqing. Daily extreme precipitation and trends over China. Scientia Sinica (Terrae), 2017, 47(12): 1469-1482. ] | |
[39] |
Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-472.
doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 |
[40] | 何玉秀, 许有鹏, 李子贻, 等. 城镇化对极端降水的影响及其贡献率研究: 以太湖平原地区为例[J]. 湖泊科学, 2022, 34(1): 262-271. |
[He Yuxiu, Xu Youpeng, Li Ziyi, et al. The impacts and its contribution rate of urbanization on extreme precipitation,1976-2015: A case study in the Lake Taihu Plain region. Journal of Lake Sciences, 2022, 34(1): 262-271. ]
doi: 10.18307/2022.0121 |
|
[41] |
Wu X J, Wang L C, Yao R, et al. Quantitatively evaluating the effect of urbanization on heat waves in China[J]. Science of the Total Environment, 2020, 731: 138857. doi: 10.1016/j.scitotenv.2020.138857.
doi: 10.1016/j.scitotenv.2020.138857 |
[42] | 黄振平. 水文统计学[M]. 北京: 中国水利水电出版社, 2003: 220-236. |
[Huang Zhenping. Hydrological statistics. Beijing, China: China Water and Power Press, 2003: 220-236. ] | |
[43] | 姚飛, 杨秀芹, 刘慕嘉, 等. ERA5再分析降水数据在长江三角洲的性能评估[J]. 水土保持学报, 2022, 36(4): 178-189. |
[Yao Fei, Yang Xiuqin, Liu Mujia, et al. Performance evaluation of ERA5 reanalysis precipitation data in the Yangtze River Delta. Journal of Soil and Water Conservation, 2022, 36(4): 178-189. ] | |
[44] | 冶运涛, 梁犁丽, 龚家国, 等. 长江上游流域降水结构时空演变特性[J]. 水科学进展, 2014, 25(2): 164-171. |
[Ye Yuntao, Liang Lili, Gong Jiaguo, et al. Spatial-temporal variability characteristics of precipitation structure across the upper Yangtze River Basin, China. Advances in Water Science, 2014, 25(2): 164-171. ] | |
[45] |
焦毅蒙, 赵娜, 岳天祥, 等. 城市化对北京市极端气候的影响研究[J]. 地理研究, 2020, 39(2): 461-472.
doi: 10.11821/dlyj020181343 |
[Jiao Yimeng, Zhao Na, Yue Tianxiang, et al. The effect of urbanization on extreme climate events in Beijing. Geographical Research, 2020, 39(2): 461-472. ]
doi: 10.11821/dlyj020181343 |
|
[46] | 周莉, 江志红, 李肇新, 等. 中国东部不同区域城市群下垫面变化气候效应的模拟研究[J]. 大气科学, 2015, 39(3): 596-610. |
[Zhou Li, Jiang Zhihong, Li Zhaoxin, et al. Numerical simulation of urbanization climate effects in regions of east China. Chinese Journal of Atmospheric Sciences, 2015, 39(3): 596-610. ] | |
[47] |
Guo J P, Tian N, Zhan Q, et al. Declining frequency of summertime local-scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols[J]. Geophysical Research Letters, 2017, 44(11): 5700-5708.
doi: 10.1002/2017GL073533 |
No related articles found! |
|