地理科学进展 ›› 2023, Vol. 42 ›› Issue (1): 79-88.doi: 10.18306/dlkxjz.2023.01.007
收稿日期:
2022-06-03
修回日期:
2022-08-20
出版日期:
2023-01-28
发布日期:
2023-03-28
通讯作者:
*王波(1987— ),男,湖南衡阳人,博士,副教授,硕士生导师,研究方向为城市地理与区域规划、智慧城市。E-mail: wangbo68@mail.sysu.edu.cn作者简介:
汪成刚(1980— ),男,湖北京山人,硕士,高级工程师,研究方向为城市与区域规划。E-mail: vitovito@qq.com
基金资助:
WANG Chenggang1(), WANG Bo2,3,*(
), WANG Qizhi2, LEI Yaqin2
Received:
2022-06-03
Revised:
2022-08-20
Online:
2023-01-28
Published:
2023-03-28
Supported by:
摘要:
城市地理与城乡规划一直关注城市活力与建成环境的关系。论文以广州中心城区为例,通过采集百度热力图、建筑矢量数据、路网数据、兴趣点数据等多源空间大数据,应用梯度提升决策树模型,探究建设强度、功能性质和交通可达性3个维度的建成环境要素对城市活力影响的非线性关系和阈值效应,并对比工作日白天与夜间的影响差异。研究发现:① 容积率对城市活力塑造的相对重要性最高,其次是休闲设施密度与公交密度,且白天与夜间的差异不显著。合理的开发建设强度、集聚的休闲与办公设施、公交导向交通发展,更有助于塑造充满活力的城市。② 各建成环境要素与城市活力之间均存在非线性关系和阈值效应,且部分建成环境要素白天与夜间的差异较明显。研究结论可为精细化的建成环境规划与治理以促进城市活力提供一定的政策启示。
汪成刚, 王波, 王琪智, 雷雅钦. 城市活力与建成环境的非线性关系和阈值效应研究——以广州市中心城区为例[J]. 地理科学进展, 2023, 42(1): 79-88.
WANG Chenggang, WANG Bo, WANG Qizhi, LEI Yaqin. Nonlinear associations between urban vitality and built environment factors and threshold effects: A case study of central Guangzhou City[J]. PROGRESS IN GEOGRAPHY, 2023, 42(1): 79-88.
表1
变量定义与描述性统计
变量 | 描述 | 平均值 | 标准差 | 最小值 | 最大值 | |
---|---|---|---|---|---|---|
城市活力 | 百度热力指数 | 381.30 | 79.33 | 36.28 | 531.75 | |
建设强度 | 建筑密度 | 建筑基底面积/用地面积 | 0.43 | 0.19 | 0 | 1.00 |
容积率 | 建筑总面积/用地面积 | 2.46 | 1.40 | 0 | 9.41 | |
功能性质 | 居住设施密度 | 居住设施POI密度(个/km2) | 22.82 | 25.22 | 0 | 193.00 |
办公设施密度 | 办公设施POI密度(个/km2) | 112.48 | 120.26 | 0 | 1232.00 | |
休闲设施密度 | 休闲设施POI密度(个/km2) | 141.18 | 160.45 | 0 | 1026.00 | |
功能混合度 | 0.56 | 0.20 | 0.11 | 1.00 | ||
交通可达性 | 路网密度 | 道路长度/用地面积(km/km2) | 0.94 | 1.58 | 0 | 11.50 |
公交密度 | 公交线路数量×公交站点数量/用地面积(个/km2) | 78.82 | 69.69 | 0 | 431.69 | |
地铁可达性 | 网格中心到最近地铁站的直线距离(km) | 0.62 | 0.44 | 0.32 | 1.20 |
[1] | Jacobs J. The death and life of great American cities[M]. New York, USA: Random House, 1961. |
[2] | Whyte W H. The social life of small urban spaces[M]. Washington D C, USA: Conservation Foundation, 1980. |
[3] | Lynch K. A theory of good city form[M]. Cambridge, USA: The MIT Press, 1982. |
[4] | Gehl J. Life between buildings: Using public space[M]. Washington D C, USA: Island Press, 1987. |
[5] |
Montgomery J. Making a city: Urbanity, vitality and urban design[J]. Journal of Urban Design, 2007, 3(1): 93-116.
doi: 10.1080/13574809808724418 |
[6] |
Wu C, Ye X Y, Ren F, et al. Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China[J]. Cities, 2018, 77: 104-116.
doi: 10.1016/j.cities.2018.01.017 |
[7] |
Glaeser E. Cities, productivity, and quality of life[J]. Science, 2011, 333: 592-594.
doi: 10.1126/science.1209264 pmid: 21798941 |
[8] |
塔娜, 曾屿恬, 朱秋宇, 等. 基于大数据的上海中心城区建成环境与城市活力关系分析[J]. 地理科学, 2020, 40(1): 60-68.
doi: 10.13249/j.cnki.sgs.2020.01.008 |
[Ta Na, Zeng Yutian, Zhu Qiuyu, et al. Relationship between built environment and urban vitality in Shanghai downtown area based on big data. Scientia Geographica Sinica, 2020, 40(1): 60-68. ]
doi: 10.13249/j.cnki.sgs.2020.01.008 |
|
[9] |
王波, 雷雅钦, 汪成刚, 等. 建成环境对城市活力影响的时空异质性研究: 基于大数据的分析[J]. 地理科学, 2022, 42(2): 274-283.
doi: 10.13249/j.cnki.sgs.2022.02.009 |
[Wang Bo, Lei Yaqin, Wang Chenggang, et al. The spatio-temporal impacts of the built environment on urban vitality: A study based on big data. Scientia Geographica Sinica, 2022, 42(2): 274-283. ]
doi: 10.13249/j.cnki.sgs.2022.02.009 |
|
[10] |
Wang B, Lei Y, Xue D, et al. Elaborating spatiotemporal associations between the built environment and urban vibrancy: A case of Guangzhou City, China[J]. Chinese Geographical Science, 2022, 32(3): 480-492.
doi: 10.1007/s11769-022-1272-6 |
[11] |
邹思聪, 张姗琪, 甄峰. 基于居民时空行为的社区日常活动空间测度及活力影响因素研究: 以南京市沙洲、南苑街道为例[J]. 地理科学进展, 2021, 40(4): 580-596.
doi: 10.18306/dlkxjz.2021.04.004 |
[Zou Sicong, Zhang Shanqi, Zhen Feng. Measurement of community daily activity space and influencing factors of vitality based on residents' spatiotemporal behavior: Taking Shazhou and Nanyuan streets in Nanjing as examples. Progress in Geography, 2021, 40(4): 580-596. ]
doi: 10.18306/dlkxjz.2021.04.004 |
|
[12] |
Yue Y, Zhuang Y, Yeh A G O, et al. Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy[J]. International Journal of Geographical Information Science, 2017, 31(4): 658-675.
doi: 10.1080/13658816.2016.1220561 |
[13] |
Huang B, Zhou Y L, Li Z G, et al. Evaluating and characterizing urban vibrancy using spatial big data: Shanghai as a case study[J]. Environment and Planning B: Urban Analytics and City Science, 2019, 47(9): 1543-1559.
doi: 10.1177/2399808319828730 |
[14] |
王波, 甄峰, 张浩. 基于签到数据的城市活动时空间动态变化及区划研究[J]. 地理科学, 2015, 35(2): 151-160.
doi: 10.13249/j.cnki.sgs.2015.02.151 |
[Wang Bo, Zhen Feng, Zhang Hao. The dynamic changes of urban space-time activity and activity zoning based on check-in data in Sina web. Scientia Geographica Sinica, 2015, 35(2): 151-160. ]
doi: 10.13249/j.cnki.sgs.2015.02.151 |
|
[15] |
Loo B P Y, Wang B. Progress of e-development in China since 1998[J]. Telecommunications Policy, 2017, 41(9): 731-742.
doi: 10.1016/j.telpol.2017.03.001 |
[16] |
甄峰, 王波. “大数据”热潮下人文地理学研究的再思考[J]. 地理研究, 2015, 34(5): 803-811.
doi: 10.11821/dlyj201505001 |
[Zhen Feng, Wang Bo. Rethinking human geography in the age of big data. Geographical Research, 2015, 34(5): 803-811. ]
doi: 10.11821/dlyj201505001 |
|
[17] |
Delclòs-Alió X, Miralles-Guasch C. Looking at Barcelona through Jane Jacobs's eyes: Mapping the basic conditions for urban vitality in a Mediterranean conurbation[J]. Land Use Policy, 2018, 75: 505-517.
doi: 10.1016/j.landusepol.2018.04.026 |
[18] |
Wu J Y, Ta N, Song Y, et al. Urban form breeds neighborhood vibrancy: A case study using a GPS-based activity survey in suburban Beijing[J]. Cities, 2018, 74: 100-108.
doi: 10.1016/j.cities.2017.11.008 |
[19] | 钮心毅, 吴莞姝, 李萌. 基于LBS定位数据的建成环境对街道活力的影响及其时空特征研究[J]. 国际城市规划, 2019, 34(1): 28-37. |
[Niu Xinyi, Wu Wanshu, Li Meng. Influence of built environment on street vitality and its spatiotemporal characteristics based on LBS positioning data. Urban Planning International, 2019, 34(1): 28-37. ]
doi: 10.22217/upi.2018.495 |
|
[20] |
Jin X B, Long Y, Sun W, et al. Evaluating cities' vitality and identifying ghost cities in China with emerging geographical data[J]. Cities, 2017, 63: 98-109.
doi: 10.1016/j.cities.2017.01.002 |
[21] |
王波, 甄峰, 张姗琪, 等. 空气污染对城市活力的影响及其建成环境异质性: 基于大数据的分析[J]. 地理研究, 2021, 40(7): 1935-1948.
doi: 10.11821/dlyj020200685 |
[Wang Bo, Zhen Feng, Zhang Shanqi, et al. The impact of air pollution on urban vibrancy and its built environment heterogeneity: An empirical analysis based on big data. Geographical Research, 2021, 40(7): 1935-1948. ]
doi: 10.11821/dlyj020200685 |
|
[22] |
Wang B, Zhen F, Wei Z C, et al. A theoretical framework and methodology for urban activity spatial structure in e-society: Empirical evidence for Nanjing City, China[J]. Chinese Geographical Science, 2015, 25(6): 672-683.
doi: 10.1007/s11769-015-0751-4 |
[23] |
Long Y, Huang C C. Does block size matter? The impact of urban design on economic vitality for Chinese cities[J]. Environment and Planning B: Urban Analytics and City Science, 2017, 46(3): 406-422.
doi: 10.1177/2399808317715640 |
[24] | 王伟强, 马晓娇. 基于多源数据的滨水公共空间活力评价研究: 以黄浦江滨水区为例[J]. 城市规划学刊, 2020(1): 48-56. |
[Wang Weiqiang, Ma Xiaojiao. Vitality assessment of waterfront public space based on multi-source data: A case study of the Huangpu River waterfront. Urban Planning Forum, 2020(1): 48-56. ] | |
[25] |
Ye Y, Li D, Liu X J. How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China[J]. Urban Geography, 2017, 39(4): 631-652.
doi: 10.1080/02723638.2017.1381536 |
[26] |
Xia C, Yeh A G O, Zhang A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities[J]. Landscape and Urban Planning, 2020, 193:103669. doi: 10.1016/j.landurbplan.2019.103669.
doi: 10.1016/j.landurbplan.2019.103669 |
[27] |
Kim Y L. Seoul's Wi-Fi hotspots: Wi-Fi access points as an indicator of urban vitality[J]. Computers, Environment and Urban Systems, 2018, 72: 13-24.
doi: 10.1016/j.compenvurbsys.2018.06.004 |
[28] |
Xiao L Z, Lo S, Zhou J P, et al. Predicting vibrancy of metro station areas considering spatial relationships through graph convolutional neural networks: The case of Shenzhen, China[J]. Environment and Planning B: Urban Analytics and City Science, 2021, 48(8): 2363-2384.
doi: 10.1177/2399808320977866 |
[29] |
Yang J W, Cao J, Zhou Y F. Elaborating non-linear associations and synergies of subway access and land uses with urban vitality in Shenzhen[J]. Transportation Research Part A: Policy and Practice, 2021, 144: 74-88.
doi: 10.1016/j.tra.2020.11.014 |
[30] | 吴志强, 叶锺楠. 基于百度地图热力图的城市空间结构研究: 以上海中心城区为例[J]. 城市规划, 2016, 40(4): 33-40. |
[Wu Zhiqiang, Ye Zhongnan. Research on urban spatial structure based on Baidu heat map: A case study on the central city of Shanghai. City Planning Review, 2016, 40(4): 33-40. ] | |
[31] |
赵鹏军, 罗佳, 胡昊宇. 基于大数据的生活圈范围与服务设施空间匹配研究: 以北京为例[J]. 地理科学进展, 2021, 40(4): 541-553.
doi: 10.18306/dlkxjz.2021.04.001 |
[Zhao Pengjun, Luo Jia, Hu Hao-yu. Spatial match between residents' daily life circle and public service facilities using big data analytics: A case of Beijing. Progress in Geography, 2021, 40(4): 541-553. ]
doi: 10.18306/dlkxjz.2021.04.001 |
|
[32] | 钟炜菁, 王德. 上海市中心城区夜间活力的空间特征研究[J]. 城市规划, 2019, 43(6): 97-106, 114. |
[Zhong Weijing, Wang De. A study on the spatial characteristics of nighttime vitality in the city center of Shanghai. City Planning Review, 2019, 43(6): 97-106, 114. ] | |
[33] |
司睿, 林姚宇, 肖作鹏, 等. 基于街景数据的建成环境与街道活力时空分析: 以深圳福田区为例[J]. 地理科学, 2021, 41(9): 1536-1545.
doi: 10.13249/j.cnki.sgs.2021.09.005 |
[Si Rui, Lin Yaoyu, Xiao Zuopeng, et al. Spatio-temporal analysis of built environment and street vitality relationship based on street-level imagery: A case study of Futian District, Shenzhen. Scientia Geographica Sinica, 2021, 41(9): 1536-1545. ]
doi: 10.13249/j.cnki.sgs.2021.09.005 |
|
[34] | 韩寒. 深圳市轨道交通结构与商业活力空间关联分析[J]. 经济地理, 2021, 41(3): 86-96. |
[Han Han. Spatial correlation between rail transit structure and commercial vitality in Shenzhen. Economic Geography, 2021, 41(3): 86-96. ]
doi: 10.2307/141859 |
|
[35] |
仝照民, 安睿, 刘耀林. 建成环境对居民通勤方式选择的影响: 以武汉市城中村为例[J]. 地理科学进展, 2021, 40(12): 2048-2060.
doi: 10.18306/dlkxjz.2021.12.006 |
[Tong Zhaomin, An Rui, Liu Yaolin. Impact of the built environment on residents' commuting mode choices: A case study of urban village in Wuhan City. Progress in Geography, 2021, 40(12): 2048-2060. ]
doi: 10.18306/dlkxjz.2021.12.006 |
|
[36] |
张琳, 周素红, 关美宝, 等. 城市公交车微环境对乘客舒适度的非线性影响[J]. 地理科学进展, 2021, 40(6): 967-979.
doi: 10.18306/dlkxjz.2021.06.007 |
[Zhang Lin, Zhou Suhong, Kwan Mei-Po, et al. Nonlinear effects of bus micro-environments on passengers' comfort. Progress in Geography, 2021, 40(6): 967-979. ] | |
[37] |
Liu J, Wang B, Xiao L. Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach[J]. Journal of Transport Geography, 2021, 92:103034. doi: 10.1016/j.jtrangeo.2021.103034.
doi: 10.1016/j.jtrangeo.2021.103034 |
[38] |
Friedman J H. Greedy function approximation: A gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.
doi: 10.1214/aos/1013203450 |
[1] | 李显正, 赵振斌, 刘阳, 张大钊, 张戬, 张予倩. 基于街景图像的古镇旅游地商业同质化空间测度——以大理古城为例[J]. 地理科学进展, 2023, 42(1): 104-115. |
[2] | 刘华, 周田原, 张贵科, 刘学军, 邓韶辉. 生命周期视角下建成环境对居民迁居强度的影响——基于武汉市多源数据分析[J]. 地理科学进展, 2023, 42(1): 66-78. |
[3] | 魏越, 杨东峰. 邻里目的地建成环境对老年日常活动机会的影响——基于感知和参与视角[J]. 地理科学进展, 2023, 42(1): 89-103. |
[4] | 储君, 仝德, 古恒宇, 曹志强, 潘向向. 中国城际联系距离衰减的非线性规律——基于人口流动大数据[J]. 地理科学进展, 2023, 42(1): 1-11. |
[5] | 张帆, 张永勇, 陈俊旭, 翟晓燕, 胡庆芳. 多种机器学习模型对不同洪水类型特征指标模拟效果评估[J]. 地理科学进展, 2022, 41(7): 1239-1250. |
[6] | 刘吉祥, 肖龙珠, 周江评, 郭源园, 杨林川. 建成环境与青少年步行通学的非线性关系——基于极限梯度提升模型的研究[J]. 地理科学进展, 2022, 41(2): 251-263. |
[7] | 王安琪, 彭建东, 任鹏, 杨红, 代琦. 轨道站点周边建成环境对残疾人出行行为的影响研究——以武汉市189个轨道站点为例[J]. 地理科学进展, 2021, 40(7): 1127-1140. |
[8] | 张琳, 周素红, 关美宝, 陈菲. 城市公交车微环境对乘客舒适度的非线性影响[J]. 地理科学进展, 2021, 40(6): 967-979. |
[9] | 许婧雪, 谌丽, 张文忠. 建成环境是否影响居民健康生活方式?——基于北京22个社区的实证分析[J]. 地理科学进展, 2021, 40(4): 660-670. |
[10] | 张雪, 周素红, 陈菲. 基于出行链的建成环境对居民小汽车通勤出行的影响[J]. 地理科学进展, 2021, 40(4): 671-680. |
[11] | 仝照民, 安睿, 刘耀林. 建成环境对居民通勤方式选择的影响——以武汉市城中村为例[J]. 地理科学进展, 2021, 40(12): 2048-2060. |
[12] | 张鹏, 胡守庚, 杨剩富, 成佩昆. 基于多源数据和集成学习的城市住宅地价分布模拟——以武汉市为例[J]. 地理科学进展, 2021, 40(10): 1664-1677. |
[13] | 刘晔, 肖童, 刘于琪, 邱婴芝, 刘义, 李志刚. 城市建成环境对广州市居民幸福感的影响——基于15 min步行可达范围的分析[J]. 地理科学进展, 2020, 39(8): 1270-1282. |
[14] | 邬柯杰, 吴吉东, 叶梦琪. 社交媒体数据在自然灾害应急管理中的应用研究综述[J]. 地理科学进展, 2020, 39(8): 1412-1422. |
[15] | 李智轩, 何仲禹, 张一鸣, 金霜霜, 王雪梅, 朱捷, 刘师岑. 绿色环境暴露对居民心理健康的影响研究——以南京为例[J]. 地理科学进展, 2020, 39(5): 779-791. |
|