地理科学进展 ›› 2022, Vol. 41 ›› Issue (11): 2123-2134.doi: 10.18306/dlkxjz.2022.11.011
收稿日期:
2022-03-29
修回日期:
2022-06-10
出版日期:
2022-11-28
发布日期:
2023-01-28
通讯作者:
*宋广文(1991— ),男,广东廉江人,博士,副教授,硕士生导师,主要研究方向为时空行为与犯罪地理分析。E-mail: songgwen@gzhu.edu.cn作者简介:
黎家琪(1999— ),女,广东佛山人,硕士生,主要研究方向为时空行为与犯罪地理分析。E-mail: LiJQ@e.gzhu.edu.cn
基金资助:
LI Jiaqi(), SONG Guangwen*(
), XIAO Luzi, ZHANG Xuewei
Received:
2022-03-29
Revised:
2022-06-10
Online:
2022-11-28
Published:
2023-01-28
Supported by:
摘要:
从犯罪出行距离的角度研究犯罪行为,有助于更好地理解犯罪发生的机理。已有研究主要探讨作案社区的特征对犯罪者出行距离的影响,尚未综合考虑作案地、居住社区与作案社区差异及出行物理障碍(physical barrier)影响。论文以中国南方某特大城市为例,构建考虑个体层与作案社区层特征的多层线性回归模型,探究盗窃者犯罪出行距离的影响因素。研究发现:① 相比作案社区层,个体层的变量对犯罪出行距离的影响更大;② 出行物理障碍变量会提高模型的解释力,犯罪出行跨越的物理障碍越多,则出行距离越远,且它会影响作案社区中地铁、超市、银行对犯罪出行距离的作用;③ 居住社区与作案社区之间的环境差异对犯罪出行距离有影响,居住社区中的公交站、学校、超市越多,地铁站越少,犯罪者的出行距离越近。研究结论可以为犯罪者的地理画像与警务防控提供理论支撑。
黎家琪, 宋广文, 肖露子, 张学炜. 盗窃者犯罪出行距离的特征及其影响因素——基于居住社区、作案社区及出行物理障碍的综合考虑[J]. 地理科学进展, 2022, 41(11): 2123-2134.
LI Jiaqi, SONG Guangwen, XIAO Luzi, ZHANG Xuewei. Characteristics and influencing factors of thieves’ travel distance: A comprehensive consideration of residential community, target community, and physical barriers to travel[J]. PROGRESS IN GEOGRAPHY, 2022, 41(11): 2123-2134.
表2
因变量和自变量的描述性统计
变量 | 最小值 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|
出行距离/km | 0.065 | 86.953 | 5.688 | 8.267 |
个体层变量 | ||||
年龄/岁 | 6 | 79 | 33.13 | 11.253 |
性别(男为1,女为0) | 0 | 1 | 0.887 | 0.317 |
是否居住社区作案(是为1,否为0) | 0 | 1 | 0.165 | 0.371 |
高速路障碍/条 | 0 | 8 | 0.715 | 1.13 |
河流障碍/条 | 0 | 12 | 0.311 | 0.842 |
地铁站差异/个 | -3 | 3 | 0.055 | 0.501 |
公交站差异/个 | -102 | 102 | 0.067 | 8.644 |
学校差异/个 | -38 | 40 | 0.141 | 4.483 |
便利店差异/个 | -26 | 25 | -0.06 | 4.159 |
专业市场差异/个 | -17 | 17 | 0.141 | 1.656 |
KTV差异/个 | -11 | 11 | 0.003 | 1.377 |
电影院差异/个 | -2 | 2 | 0.047 | 0.392 |
银行差异/个 | -40 | 42 | 0.662 | 5.013 |
超市差异/个 | -25 | 25 | -0.502 | 4.094 |
警务设施差异/个 | -13 | 13 | -0.235 | 2.625 |
外来人口比例差异/% | -94.4 | 98.3 | -4.5 | 26.6 |
作案社区层变量 | ||||
地铁站/个 | 0 | 3 | 0.165 | 0.434 |
公交站/个 | 0 | 102 | 5.849 | 8.321 |
学校/个 | 0 | 40 | 3.019 | 4.103 |
便利店/个 | 0 | 26 | 2.962 | 3.594 |
专业市场/个 | 0 | 17 | 0.435 | 1.539 |
KTV/个 | 0 | 11 | 0.515 | 1.124 |
电影院/个 | 0 | 2 | 0.098 | 0.339 |
银行/个 | 0 | 42 | 3.605 | 4.475 |
超市/个 | 0 | 25 | 2.950 | 3.685 |
警务设施/个 | 0 | 13 | 1.745 | 2.076 |
外来人口比例/% | 0 | 98.5 | 51.2 | 24.0 |
表3
交叉分类层次性模型结果
变量 | 零模型 | 模型1 | 模型2 | 模型3 |
---|---|---|---|---|
截距 | 0.999*** | 1.446*** | 0.867*** | 0.769*** |
个体层面变量 | ||||
年龄 | -0.003 * | -0.004** | -0.003* | |
性别 | -0.053 | 0.006 | 0.004 | |
是否居住社区作案 | -1.867*** | -1.393*** | -1.415*** | |
高速路障碍数量 | 0.488*** | 0.480*** | ||
河流障碍数量 | 0.336*** | 0.345*** | ||
地铁站数量差异 | 0.085* | |||
公交站数量差异 | -0.013*** | |||
学校数量差异 | -0.010* | |||
便利店数量差异 | 0.007 | |||
专业市场数量差异 | 0.018 | |||
KTV数量差异 | 0.005 | |||
电影院数量差异 | 0.047 | |||
银行数量差异 | 0 | |||
超市数量差异 | -0.023*** | |||
警务设施数量差异 | 0.0120 | |||
外来人口比例差异 | -0.051 | |||
作案社区层面 | ||||
地铁站数量 | -0.085 | -0.119* | -0.174** | |
公交站数量 | 0.022*** | 0.029*** | 0.036*** | |
学校数量 | 0.009 | 0 | 0.010 | |
便利店数量 | -0.020* | -0.017* | -0.019* | |
专业市场数量 | 0.006 | -0.001 | -0.015 | |
KTV数量 | -0.044 | -0.022 | -0.029 | |
电影院数量 | -0.018 | -0.072 | -0.119 | |
银行数量 | 0.017* | 0.004 | 0.004 | |
超市数量 | 0.013 | 0.022*** | 0.034*** | |
警务设施数量 | -0.003 | -0.008 | -0.016 | |
外来人口比例 | -0.299** | -0.241** | -0.237** | |
作案社区层方差 | 0.203 | 0.170 | 0.179 | 0.166 |
个体层方差 | 1.341 | 0.914 | 0.475 | 0.461 |
总方差 | 1.544 | 1.084 | 0.654 | 0.626 |
作案社区层方差占比(ICC作案社区) | 13.132 | 15.681 | 27.329 | 26.455 |
个体层方差占比(ICC个体) | 86.868 | 84.319 | 72.671 | 73.545 |
[1] |
Lammers M, Menting B, Ruiter S, et al. Biting once, twice: The influence of prior on subsequent crime location choice[J]. Criminology, 2015, 53(3): 309-329.
doi: 10.1111/1745-9125.12071 |
[2] |
Townsley M, Birks D, Bernasco W, et al. Burglar target selection: A cross-national comparison[J]. Journal of Research in Crime and Delinquency, 2015, 52(1): 3-31.
doi: 10.1177/0022427814541447 pmid: 25866418 |
[3] | 杨刚斌, 柳林, 何深静, 等. 广州门禁小区入室盗窃受害率与内部环境分析[J]. 人文地理, 2016, 31(3): 45-51. |
[ Yang Gangbin, Liu Lin, He Shenjing, et al. Community environmental factor analysis of burglary victimization in gated community in Guangzhou. Human Geography, 2016, 31(3): 45-51. ] | |
[4] | 古杰, 周素红, 闫小培. 基于家庭的广州市入室盗窃的特征分析[J]. 人文地理, 2016, 31(5): 87-92, 140. |
[ Gu Jie, Zhou Suhong, Yan Xiaopei. Research on characteristics of urban burglary based on family in Guangzhou. Human Geography, 2016, 31(5): 87-92, 140. ] | |
[5] |
Bernasco W, Block R, Ruiter S. Go where the money is: Modeling street robbers' location choices[J]. Journal of Economic Geography, 2012, 13(1): 119-143.
doi: 10.1093/jeg/lbs005 |
[6] |
Bernasco W, Block R. Robberies in Chicago: A block-level analysis of the influence of crime generators, crime attractors, and offender anchor points[J]. Journal of Research in Crime and Delinquency, 2011, 48(1): 33-57.
doi: 10.1177/0022427810384135 |
[7] |
徐冲, 柳林, 周素红. 基于临近相似性考虑的犯罪热点密度图预测准确性比较: 以DP半岛街头抢劫犯罪为例[J]. 地理科学, 2016, 36(1): 55-62.
doi: 10.13249/j.cnki.sgs.2016.01.007 |
[ Xu Chong, Liu Lin, Zhou Suhong. The comparison of predictive accuracy of crime hotspot density maps with the consideration of the near similarity: A case study of robberies at DP peninsula. Scientia Geographica Sinica, 2016, 36(1): 55-62. ]
doi: 10.13249/j.cnki.sgs.2016.01.007 |
|
[8] | 李卫红, 戴侃, 闻磊. 顾及地理因素的犯罪地理目标模型改进方法[J]. 测绘科学, 2015, 40(7): 86-91, 149. |
[ Li Weihong, Dai kan, Wen Lei. Improvement of criminal geographic targeting model considering geographic factors. Science of Surveying and Mapping, 2015, 40(7): 86-91, 149. ] | |
[9] |
Block R, Galary A, Brice D. The journey to crime: Victims and offenders converge in violent index offences in Chicago[J]. Security Journal, 2007, 20(2): 123-137.
doi: 10.1057/palgrave.sj.8350030 |
[10] | Rengert G F. The journey to crime[M]. New York, USA: Routledge, 2002: 109-316. |
[11] | Pizarro J M, Corsaro N, Yu S S V. Journey to crime and victimization: An application of routine activities theory and environmental criminology to homicide[J]. Victims & Offenders, 2007, 2(4): 375-394. |
[12] | Groff E, McEwen T. Exploring the spatial configuration of places related to homicide events[R/OL]. Alexandria, USA: Institute for Law and Justice, 2006. . |
[13] |
Morselli C, Royer M N. Criminal mobility and criminal achievement[J]. Journal of Research in Crime and Delinquency, 2008, 45(1): 4-21.
doi: 10.1177/0022427807309630 |
[14] |
Snook B. Individual differences in distance travelled by serial burglars[J]. Journal of Investigative Psychology and Offender Profiling, 2004, 1(1): 53-66.
doi: 10.1002/jip.3 |
[15] |
龙冬平, 柳林, 周素红, 等. 地理学视角下犯罪者行为研究进展[J]. 地理科学进展, 2017, 36(7): 886-902.
doi: 10.18306/dlkxjz.2017.07.010 |
[ Long Dongping, Liu Lin, Zhou Suhong, et al. Research progress of criminal behavior from the perspective of geography. Progress in Geography, 2017, 36(7): 886-902. ]
doi: 10.18306/dlkxjz.2017.07.010 |
|
[16] |
赵梓渝, 刘大千, 肖建红, 等. 基于犯罪模式理论的犯罪出行空间特征与影响因素: 以长春市南关区扒窃为例[J]. 地理研究, 2021, 40(3): 885-899.
doi: 10.11821/dlyj020191027 |
[ Zhao Ziyu, Liu Daqian, Xiao Jianhong, et al. Spatial characteristics and influencing factors analysis of journey-to-crime based on crime pattern theory: A study of theft crime in Nanguan District, Changchun. Geographical Research, 2021, 40(3): 885-899. ] | |
[17] | Zipf G K. Human behavior and the principle of least effort: An introduction to human ecology[M]. Cambridge, USA: Addison-Wesley Press, 1949: 56-573. |
[18] |
Xiao L Z, Liu L, Song G W, et al. Journey-to-crime distances of residential burglars in China disentangled: Origin and destination effects[J]. ISPRS International Journal of Geo Information, 2018, 7(8): 325. doi: 10.3390/ijgi7080325.
doi: 10.3390/ijgi7080325 |
[19] |
van Daele S, Vander Beken T. Outbound offending: The journey to crime and crime sprees[J]. Journal of Environmental Psychology, 2011, 31(1): 70-78.
doi: 10.1016/j.jenvp.2010.09.002 |
[20] |
肖露子, 柳林, 宋广文, 等. 基于理性选择理论的社区环境对入室盗窃的影响研究[J]. 地理研究, 2017, 36(12): 2479-2491.
doi: 10.11821/dlyj201712017 |
[ Xiao Luzi, Liu Lin, Song Guangwen, et al. Impacts of community environment on residential burglary based on rational choice theory. Geographical Research, 2017, 36(12): 2479-2491. ]
doi: 10.11821/dlyj201712017 |
|
[21] |
徐冲, 柳林, 周素红, 等. 微观空间因素对街头抢劫影响的空间异质性: 以DP半岛为例[J]. 地理研究, 2017, 36(12): 2492-2504.
doi: 10.11821/dlyj201712018 |
[ Xu Chong, Liu Lin, Zhou Suhong, et al. Spatial heterogeneity of micro-spatial factors' effects on street robberies: A case study of DP peninsula. Geographical Research, 2017, 36(12): 2492-2504. ]
doi: 10.11821/dlyj201712018 |
|
[22] |
van Sleeuwen S E M, Ruiter S, Steenbeek W. Right place, right time? Making crime pattern theory time-specific[J]. Crime Science, 2021, 10(1). doi: 10.1186/s40163- 021-00139-8.
doi: 10.1186/s40163- 021-00139-8 |
[23] |
Cowan D, Moreto W D, Burton C, et al. Applying crime pattern theory and risk terrain modeling to examine environmental crime in Cambodia[J]. Journal of Contemporary Criminal Justice, 2020, 36(3): 327-350.
doi: 10.1177/1043986220923467 |
[24] |
Song C M, Qu Z H, Blumm N, et al. Limits of predictability in human mobility[J]. Science, 2010, 327: 1018-1021.
doi: 10.1126/science.1177170 pmid: 20167789 |
[25] | Leitner M. Crime modeling and mapping using geospatial technologies[M]. New York, USA: Springer, 2013: 145-178. |
[26] | Andresen M A, Frank R, Felson M. Age and the distance to crime[J]. Criminology & Criminal Justice, 2014, 14(3): 314-333. |
[27] | Bichler G, Schwartz J, Orosco C. Delinquents on the move: Examining subgroup travel variability[J]. Crime Patterns and Analysis, 2010, 3(1): 14-37. |
[28] |
Ackerman J M, Rossmo D K. How far to travel? A multilevel analysis of the residence-to-crime distance[J]. Journal of Quantitative Criminology, 2015, 31(2): 237-262.
doi: 10.1007/s10940-014-9232-7 |
[29] | Vandeviver C, van Daele S, Vander Beken T. What makes long crime trips worth undertaking? Balancing costs and benefits in burglars' journey to crime[J]. British Journal of Criminology, 2015(2): 399-420. |
[30] |
Liu L, Feng J X, Ren F, et al. Examining the relationship between neighborhood environment and residential locations of juvenile and adult migrant burglars in China[J]. Cities, 2018, 82: 10-18.
doi: 10.1016/j.cities.2018.04.014 |
[31] |
Zhang Y, Zhao J H, Ren L, et al. Space-time clustering of crime events and neighborhood characteristics in Houston[J]. Criminal Justice Review, 2015, 40(3): 340-360.
doi: 10.1177/0734016815573309 |
[32] |
Zhang L N, Messner S F, Liu J H. A multilevel analysis of the risk of household burglary in the city of Tianjin, China[J]. The British Journal of Criminology, 2007, 47(6): 918-937.
doi: 10.1093/bjc/azm026 |
[33] | Kramer R. What is on the other side of the tracks? A spatial examination of neighborhood boundaries and segregation [D]. Pennsylvania, USA: University of Pennsylvania, 2012. |
[34] | Clare J, Fernandez J, Morgan F. Formal evaluation of the impact of barriers and connectors on residential burglars' macro-level offending location choices[J]. Australian & New Zealand Journal of Criminology, 2009, 42(2): 139-158. |
[35] |
Chamberlain A W, Boggess L N. Relative difference and burglary location: Can ecological characteristics of a burglar's home neighborhood predict offense location?[J]. Journal of Research in Crime and Delinquency, 2016, 53(6): 872-906.
doi: 10.1177/0022427816647993 |
[36] | 彭文华. 盗窃罪量刑规范化问题实证研究[J]. 华东政法大学学报, 2021, 24(2): 101-113. |
[ Peng Wenhua. An empirical study on the standardization of sentencing for theft. ECUPL Journal, 2021, 24(2): 101-113. ] | |
[37] |
王增利, 刘学军, 陆娟. 入室盗窃多尺度地理因子分析[J]. 地理学报, 2017, 72(2): 329-340.
doi: 10.11821/dlxb201702012 |
[ Wang Zengli, Liu Xuejun, Lu Juan. Multiscale geographic analysis of burglary. Acta Geographica Sinica, 2017, 72(2): 329-340. ]
doi: 10.11821/dlxb201702012 |
|
[38] | Wang F H. Geographic information systems and crime analysis[M]. Hershey, USA: Idea Group Publishing, 2005: 60-83. |
[39] | Wiles P, Costello A. The 'road to nowhere' : The evidence for travelling criminals[M]. London, UK: Home Office, 2000: 1-68. |
[40] |
Xu C, Chen X, Chen J G, et al. Exploring the impact of floating population with different household registration on theft[J]. ISPRS International Journal of Geo-Information, 2022, 11(8): 443. doi: 10.3390/ijgi11080443.
doi: 10.3390/ijgi11080443 |
[41] |
刘晔, 肖童, 刘于琪, 等. 城市建成环境对广州市居民幸福感的影响: 基于15 min步行可达范围的分析[J]. 地理科学进展, 2020, 39(8): 1270-1282.
doi: 10.18306/dlkxjz.2020.08.003 |
[ Liu Ye, Xiao Tong, Liu Yuqi, et al. Impacts of urban built environments on residents' subjective well-being: An analysis based on 15-minute walking distance. Progress in Geography, 2020, 39(8): 1270-1282. ] | |
[42] |
Rohm T, Carstensen C H, Fischer L, et al. Disentangling interviewer and area effects in large-scale educational assessments using cross-classified multilevel item response models[J]. Journal of Survey Statistics and Methodology, 2021, 9(4): 722-744.
doi: 10.1093/jssam/smaa015 |
[43] |
de Clercq B, Pfoertner T K, Elgar F J, et al. Social capital and adolescent smoking in schools and communities: A cross-classified multilevel analysis[J]. Social Science & Medicine, 2014, 119: 81-87.
doi: 10.1016/j.socscimed.2014.08.018 |
[44] |
Townsend N, Rutter H, Foster C. Age differences in the association of childhood obesity with area-level and school-level deprivation: Cross-classified multilevel analysis of cross-sectional data[J]. International Journal of Obesity, 2012, 36(1): 45-52.
doi: 10.1038/ijo.2011.191 pmid: 22005718 |
[45] |
Song G W, Liu L, Bernasco W, et al. Theft from the person in urban China: Assessing the diurnal effects of opportunity and social ecology[J]. Habitat International, 2018, 78: 13-20.
doi: 10.1016/j.habitatint.2018.04.010 |
[46] |
Jiang S H, Land K C, Wang J. Social ties, collective efficacy and perceived neighborhood property crime in Guangzhou, China[J]. Asian Journal of Criminology, 2013, 8(3): 207-223.
doi: 10.1007/s11417-013-9167-1 |
[47] |
Jiang S H, Lambert E, Wang J. Correlates of formal and informal social/crime control in China: An exploratory study[J]. Journal of Criminal Justice, 2007, 35(3): 261-271.
doi: 10.1016/j.jcrimjus.2007.03.003 |
[48] |
宋广文, 肖露子, 周素红, 等. 居民日常活动对扒窃警情时空格局的影响[J]. 地理学报, 2017, 72(2): 356-367.
doi: 10.11821/dlxb201702014 |
[ Song Guangwen, Xiao Luzi, Zhou Suhong, et al. Impact of residents' routine activities on the spatial-temporal pattern of theft from person. Acta Geographica Sinica, 2017, 72(2): 356-367. ]
doi: 10.11821/dlxb201702014 |
|
[49] |
Song G W, Bernasco W, Liu L, et al. Crime feeds on legal activities: Daily mobility flows help to explain thieves' target location choices[J]. Journal of Quantitative Criminology, 2019, 35(4): 831-854.
doi: 10.1007/s10940-019-09406-z |
[50] | Nichols W W. Mental maps, social characteristics, and criminal mobility[M]. New York, USA: Columbia University Press, 1980: 156-166. |
[1] | 侯超, 陈鹏, 曾昭龙, 石少冲, 原鹏辉, 沈兵. 不同主体特征的犯罪人空间出行行为分析[J]. 地理科学进展, 2020, 39(4): 602-613. |
|