地理科学进展 ›› 2022, Vol. 41 ›› Issue (11): 2018-2029.doi: 10.18306/dlkxjz.2022.11.003
收稿日期:
2022-03-28
修回日期:
2022-07-21
出版日期:
2022-11-28
发布日期:
2023-01-28
通讯作者:
*唐乐(1986— ),男,江苏宿迁人,博士,副教授,硕士生导师,主要研究方向为城市更新与城乡空间治理。E-mail: tangle910365@sina.com作者简介:
韩刚(1989— ),男,甘肃白银人,博士,讲师,主要研究方向为区域发展与城市地理。E-mail: hregion@163.com
基金资助:
HAN Gang1(), TANG Le1,2,*(
), LIU Zhimin3, ZHANG Guoqing4
Received:
2022-03-28
Revised:
2022-07-21
Online:
2022-11-28
Published:
2023-01-28
Supported by:
摘要:
区域紧凑作为紧凑城市理念在更大空间尺度的扩展,指通过城市间有效的相互作用,实现区域一体化发展的地理空间模式。论文以长三角地区为实证对象,基于高铁和城际大巴2种交通出行方式构建区域耦合网络,选取最短出行时间和出行路径评估城市间作用关系的紧凑程度,从全局网络复杂性、核心—边缘结构演化、局部模体结构等层面系统考察长三角地区紧凑性的演化特征。研究发现,长三角地区城市紧凑性在全局层面存在明显的分异特征,随着时间推移,紧凑性分布的不均衡现象逐步突出,空间上的集聚特征趋于显著;局部层面上,紧凑性处于从集聚向均衡的成长阶段,稳定状态下易形成低成本的局部高聚类特征,就城市个体而言,由局部结构涌现的角色类别表现出多样性选择机制。与已有研究相比,论文将紧凑性与出行网络有机衔接,从关系视角为区域紧凑性探索提供了有益尝试。
韩刚, 唐乐, 刘志敏, 张国庆. 耦合网络视角下长三角地区紧凑性的演化特征[J]. 地理科学进展, 2022, 41(11): 2018-2029.
HAN Gang, TANG Le, LIU Zhimin, ZHANG Guoqing. Evolution characteristics of compactness in the Yangtze River Delta from the perspective of coupled network[J]. PROGRESS IN GEOGRAPHY, 2022, 41(11): 2018-2029.
表2
空间转移矩阵与类型
聚集类型 | t+1时期 | 类型 | n | 概率/% | ||||
---|---|---|---|---|---|---|---|---|
HH | LH | LL | HL | |||||
t时期 | HH | 类型0 (0.913) | 类型Ⅰ (0.071) | 类型Ⅲ (0.005) | 类型Ⅱ (0.011) | 类型0 | 527 | 85.69 |
LH | 类型Ⅰ (0.112) | 类型0 (0.757) | 类型Ⅱ (0.131) | 类型Ⅲ (0) | 类型Ⅰ | 54 | 8.78 | |
LL | 类型Ⅲ (0) | 类型Ⅱ (0.059) | 类型0 (0.879) | 类型Ⅰ (0.063) | 类型Ⅱ | 33 | 5.37 | |
HL | 类型Ⅱ (0.035) | 类型Ⅲ (0) | 类型Ⅰ (0.163) | 类型0 (0.802) | 类型Ⅲ | 1 | 0.16 | |
Ergodic | 0.285 | 0.179 | 0.395 | 0.141 | — | — | — |
表3
网络模体特征指标
时间 | 模体238 | 模体4958 | 模体13278 | 模体31710 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | ||||||||||||
频率 | Z值 | P值 | 频率 | Z值 | P值 | 频率 | Z值 | P值 | 频率 | Z值 | P值 | ||||
5:00 | 18.67 | 30.49 | <0.001 | 28.06 | 15.94 | <0.001 | 8.15 | 14.80 | <0.001 | 2.80 | 38.99 | <0.001 | |||
6:00 | 27.28 | 22.90 | <0.001 | 35.51 | 20.33 | <0.001 | 14.02 | 21.55 | <0.001 | 4.63 | 60.83 | <0.001 | |||
7:00 | 36.55 | 29.73 | <0.001 | 37.21 | 20.37 | <0.001 | 20.94 | 4.80 | <0.001 | 9.55 | 32.13 | <0.001 | |||
8:00 | 36.60 | 22.66 | <0.001 | 35.99 | 16.62 | <0.001 | 21.06 | 10.57 | <0.001 | 9.51 | 33.34 | <0.001 | |||
9:00 | 31.36 | 24.52 | <0.001 | 37.67 | 17.51 | <0.001 | 16.28 | 20.79 | <0.001 | 6.47 | 42.57 | <0.001 | |||
10:00 | 32.44 | 24.50 | <0.001 | 37.04 | 19.37 | <0.001 | 18.19 | 14.73 | <0.001 | 7.32 | 37.86 | <0.001 | |||
11:00 | 30.30 | 24.22 | <0.001 | 35.84 | 14.77 | <0.001 | 16.72 | 11.15 | <0.001 | 6.27 | 26.16 | <0.001 | |||
12:00 | 34.28 | 26.08 | <0.001 | 37.35 | 16.76 | <0.001 | 18.57 | 13.57 | <0.001 | 7.96 | 29.29 | <0.001 | |||
13:00 | 31.65 | 24.84 | <0.001 | 37.14 | 18.13 | <0.001 | 16.38 | 17.27 | <0.001 | 6.48 | 45.94 | <0.001 | |||
14:00 | 32.22 | 22.88 | <0.001 | 38.08 | 18.35 | <0.001 | 16.19 | 15.77 | <0.001 | 6.82 | 41.15 | <0.001 | |||
15:00 | 32.51 | 22.49 | <0.001 | 36.88 | 22.29 | <0.001 | 17.74 | 17.40 | <0.001 | 7.14 | 52.09 | <0.001 | |||
16:00 | 29.94 | 25.25 | <0.001 | 36.80 | 18.83 | <0.001 | 15.76 | 15.63 | <0.001 | 5.89 | 39.67 | <0.001 | |||
17:00 | 28.69 | 20.15 | <0.001 | 35.86 | 16.63 | <0.001 | 14.68 | 12.03 | <0.001 | 5.56 | 34.14 | <0.001 | |||
18:00 | 28.32 | 23.31 | <0.001 | 35.89 | 16.84 | <0.001 | 14.58 | 18.78 | <0.001 | 5.54 | 32.20 | <0.001 | |||
19:00 | 25.53 | 31.98 | <0.001 | 33.75 | 18.70 | <0.001 | 12.26 | 22.02 | <0.001 | 4.29 | 57.41 | <0.001 | |||
20:00 | 28.52 | 36.01 | <0.001 | 35.47 | 21.87 | <0.001 | 13.00 | 26.57 | <0.001 | 5.19 | 79.46 | <0.001 |
表4
网络模体发现
模体编号 | 出现次数/次 | 主要城市 | 结构内涵 |
---|---|---|---|
238 | 915 | 南京(205)、上海(175)、苏州(164)、常州(159)、无锡(156) | 3个城市互相间形成紧凑关系 |
4958 | 10040 | 南京(2357)、上海(2025)、杭州(1710)、合肥(1674)、苏州(1608) | 3个城市互相形成紧凑关系,第4个城市仅与其中一个城市形成关系 |
13278 | 4713 | 南京(1340)、上海(1128)、苏州(1036)、常州(997)、无锡(974) | 除某2个城市不形成紧凑关系外,4个城市两两紧凑关联 |
31710 | 1922 | 南京(640)、上海(535)、苏州(526)、常州(520)、无锡(512) | 4个城市互相形成紧凑关系 |
[1] |
Mehaffy M W, Haas T. New urbanism in the new urban agenda: Threads of an unfinished reformation[J]. Urban Planning, 2020, 5(4): 441-452.
doi: 10.17645/up.v5i4.3371 |
[2] | 刘家强, 刘昌宇, 唐代盛. 新中国70年城市化演进逻辑、基本经验与改革路径[J]. 经济学家, 2020(1): 33-43. |
[ Liu Jiaqiang, Liu Changyu, Tang Daisheng. The evolution logic, basic experience and reform path of urbanization in the past 70 years. Economist, 2020(1): 33-43. ] | |
[3] | 王佳文, 叶裕民, 董珂. 从效率优先到以人为本: 基于“城市人理论”的国土空间规划价值取向思考[J]. 城市规划学刊, 2020(6): 19-26. |
[ Wang Jiawen, Ye Yumin, Dong Ke. From efficiency-priority to human-centrality: The value orientation of the territorial spatial planning based on the homo urbanicus theory. Urban Planning Forum, 2020(6): 19-26. ] | |
[4] | Dantzig G B, Saaty T L. Compact city: A plan for a liveable urban environment[M]. San Francisco, USA: W. H. Freeman and Company Publishers, 1973. |
[5] |
Breheny M. Urban compaction: Feasible and acceptable[J]. Cities, 1997, 14(4): 209-217.
doi: 10.1016/S0264-2751(97)00005-X |
[6] |
He Q S, Zeng C, Xie P, et al. Comparison of urban growth patterns and changes between three urban agglomerations in China and three metropolises in the USA from 1995 to 2015[J]. Sustainable Cities and Society, 2019, 50: 101649. doi: 10.1016/j.scs.2019.101649.
doi: 10.1016/j.scs.2019.101649 |
[7] |
Newman P W G, Kenworthy J R. Gasoline consumption and cities: A comparison of US cities with a global survey[J]. Journal of the American Planning Association, 1989, 55(1): 24-37.
doi: 10.1080/01944368908975398 |
[8] |
Lee S, An Y, Kim K. Relationship between transit modal split and intra-city trip ratio by car for compact city planning of municipalities in the Seoul metropolitan area[J]. Cities, 2017, 70: 11-21.
doi: 10.1016/j.cities.2017.06.004 |
[9] | 韩刚, 袁家冬, 王兆博. 国外城市紧凑性研究历程及对我国的启示[J]. 世界地理研究, 2017, 26(1): 56-64. |
[ Han Gang, Yuan Jiadong, Wang Zhaobo. Foreign study on the compact cities and its enlightenments to China. World Regional Studies, 2017, 26(1): 56-64. ] | |
[10] |
Zhao J M, Zhu D L, Cheng J, et al. Does regional economic integration promote urban land use efficiency? Evidence from the Yangtze River Delta, China[J]. Habitat International, 2021, 116: 102404. doi: 10.1016/j.habitatint.2021.102404.
doi: 10.1016/j.habitatint.2021.102404 |
[11] |
韩刚, 史修松, 刘志敏. 基于ERGM模型的江苏省城市网络紧凑性形成机理研究[J]. 地理科学进展, 2021, 40(12): 2025-2034.
doi: 10.18306/dlkxjz.2021.12.004 |
[ Han Gang, Shi Xiusong, Liu Zhimin. Formation mechanism of network compactness in Jiangsu Province based on exponential random graph models. Progress in Geography, 2021, 40(12): 2025-2034. ]
doi: 10.18306/dlkxjz.2021.12.004 |
|
[12] |
Hamidi S, Zandiatashbar A, Bonakdar A. The relationship between regional compactness and regional innovation capacity (RIC): Empirical evidence from a national study[J]. Technological Forecasting and Social Change, 2019, 142: 394-402.
doi: 10.1016/j.techfore.2018.07.026 |
[13] | 方创琳, 祁巍锋, 宋吉涛. 中国城市群紧凑度的综合测度分析[J]. 地理学报, 2008, 63(10): 1011-1021. |
[ Fang Chuanglin, Qi Weifeng, Song Jitao. Researches on comprehensive measurement of compactness of urban agglomerations in China. Acta Geographica Sinica, 2008, 63(10): 1011-1021. ]
doi: 10.11821/xb200810001 |
|
[14] | 蓝婷, 唐立娜, 徐智邦, 等. 基于文献计量的城市空间紧凑度研究知识图谱分析[J]. 生态学报, 2022, 42(4): 1645-1654. |
[ Lan Ting, Tang Lina, Xu Zhibang, et al. Knowledge mapping analysis of urban compactness based on Web of Science. Acta Ecologica Sinica, 2022, 42(4): 1645-1654. ] | |
[15] |
Mubareka S, Koomen E, Estreguil C, et al. Development of a composite index of urban compactness for land use modelling applications[J]. Landscape and Urban Planning, 2011, 103(3/4): 303-317.
doi: 10.1016/j.landurbplan.2011.08.012 |
[16] |
Xu C, Haase D, Su M R, et al. The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness[J]. Applied Energy, 2019, 254: 113671. doi: 10.1016/j.apenergy.2019.113671.
doi: 10.1016/j.apenergy.2019.113671 |
[17] | 杨浩, 卢新海, 匡兵, 等. 城市紧凑度与碳排放强度的时空互动关系及驱动因素: 以长株潭城市群为例[J]. 长江流域资源与环境, 2021, 30(11): 2618-2629. |
[ Yang Hao, Lu Xinhai, Kuang Bing, et al. Spatial-temporal interaction and driving factors of urban compactness and carbon emission intensity: A case study in Changsha-Zhuzhou-Xiangtan urban agglomeration. Resources and Environment in the Yangtze Basin, 2021, 30(11): 2618-2629. ] | |
[18] |
Lan T, Shao G F, Xu Z B, et al. Measuring urban compactness based on functional characterization and human activity intensity by integrating multiple geospatial data sources[J]. Ecological Indicators, 2021, 121: 107177. doi: 10.1016/j.ecolind.2020.107177.
doi: 10.1016/j.ecolind.2020.107177 |
[19] |
Rahman M H, Islam M H, Neema M N. GIS-based compactness measurement of urban form at neighborhood scale: The case of Dhaka, Bangladesh[J]. Journal of Urban Management, 2022, 11(1): 6-22.
doi: 10.1016/j.jum.2021.08.005 |
[20] | 王月英, 文雯. 关中城市群县域层面经济紧凑度分析[J]. 城市发展研究, 2016, 23(8): 22-28. |
[ Wang Yueying, Wen Wen. Analysis of county economic compactness in Guanzhong urban agglomeration. Urban Development Studies, 2016, 23(8): 22-28. ] | |
[21] |
Huang Q Y, Xu C, Jiang W Y, et al. Urban compactness and patch complexity influence PM2.5 concentrations in contrasting ways: Evidence from the Guangdong-Hong Kong-Macao Greater Bay Area of China[J]. Ecological Indicators, 2021, 133: 108407. doi: 10.1016/j.ecolind.2021.108407.
doi: 10.1016/j.ecolind.2021.108407 |
[22] |
Li X, Yang Q S, Liu X P. Discovering and evaluating urban signatures for simulating compact development using cellular automata[J]. Landscape and Urban Planning, 2008, 86(2): 177-186.
doi: 10.1016/j.landurbplan.2008.02.005 |
[23] |
Yang H R, Dobruszkes F, Wang J E, et al. Comparing China's urban systems in high-speed railway and airline networks[J]. Journal of Transport Geography, 2018, 68: 233-244.
doi: 10.1016/j.jtrangeo.2018.03.015 |
[24] |
Wang Y Q, Lu Q Y, Cao X B, et al. Travel time analysis in the Chinese coupled aviation and high-speed rail network[J]. Chaos, Solitons & Fractals, 2020, 139: 109973. doi: 10.1016/j.chaos.2020.109973.
doi: 10.1016/j.chaos.2020.109973 |
[25] | 潘海莹, 栾晓帆, 刘泉, 等. 高铁沿线建成环境对旅客换乘时耗的影响研究[J]. 城市发展研究, 2019, 26(4): 17-21. |
[ Pan Haiying, Luan Xiaofan, Liu Quan, et al. A study of the built environment of China's high-speed railway station and its impacts on transfer time. Urban Development Studies, 2019, 26(4): 17-21. ] | |
[26] | 段进, 殷铭. 长三角地区高铁站点空间换乘便捷度研究[J]. 中国科学: 技术科学, 2013, 43(2): 201-207. |
[ Duan Jin, Yin Ming. Study on space transfer convenience of high-speed railway stations in Yangtze River Delta. Scientia Sinica (Technologica), 2013, 43(2): 201-207. ] | |
[27] |
Aleta A, Meloni S, Moreno Y. A multilayer perspective for the analysis of urban transportation systems[J]. Scientific Reports, 2017, 7: 44359. doi: 10.1038/srep44359.
doi: 10.1038/srep44359 pmid: 28295015 |
[28] |
Gallotti R, Barthelemy M. The multilayer temporal network of public transport in Great Britain[J]. Scientific Data, 2015, 2: 140056. doi: 10.1038/sdata.2014.56.
doi: 10.1038/sdata.2014.56 |
[29] | 徐循初, 黄建中. 城市道路与交通规划(下册)[M]. 北京: 中国建筑工业出版社, 2007. |
[ Xu Xunchu, Huang Jianzhong. Urban road and traffic planning (volume 2). Beijing, China: China Architecture & Building Press, 2007. ] | |
[30] |
Sun X, Wei Y, Xiu C L, et al. City resilience to COVID-19 in Yangtze River Delta urban agglomeration based on the perspective of human mobility and Fisher information method[J]. Papers in Applied Geography, 2022, 8(2): 200-216.
doi: 10.1080/23754931.2021.1977171 |
[31] |
Jin F J, Wang C J, Li X W, et al. China's regional transport dominance: Density, proximity, and accessibility[J]. Journal of Geographical Sciences, 2010, 20(2): 295-309.
doi: 10.1007/s11442-010-0295-6 |
[32] |
Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: Simple building blocks of complex networks[J]. Science, 2002, 298: 824-827.
pmid: 12399590 |
[33] | 杨梓舒. 基于模体的社会网络特征分析[J]. 计算机与现代化, 2017(8): 36-41. |
[ Yang Zishu. Using motif to characterize and analyze mesoscopic features of social networks. Computer and Modernization, 2017(8): 36-41. ] | |
[34] |
Yu S, Feng Y F, Zhang D, et al. Motif discovery in networks: A survey[J]. Computer Science Review, 2020, 37: 100267. doi: 10.1016/j.cosrev.2020.100267.
doi: 10.1016/j.cosrev.2020.100267 |
[35] | 冯鑫, 胡姝慧, 李佳培, 等. 基于复杂模体的标签网络演化特征研究: 以问答学习社区知乎为例[J]. 情报科学, 2020, 38(9): 56-62. |
[ Feng Xin, Hu Shuhui, Li Jiapei, et al. Research on evolution characteristics of tagging networks based on complex motif: The case of Q&A learning community Zhihu. Information Science, 2020, 38(9): 56-62. ] | |
[36] |
Zhang X, Zhu J. Skeleton of weighted social network[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(6): 1547-1556.
doi: 10.1016/j.physa.2012.12.001 |
[37] |
吴康, 方创琳, 赵渺希. 中国城市网络的空间组织及其复杂性结构特征[J]. 地理研究, 2015, 34(4): 711-728.
doi: 10.11821/dlyj201504010 |
[ Wu Kang, Fang Chuanglin, Zhao Miaoxi. The spatial organization and structure complexity of Chinese intercity networks. Geographical Research, 2015, 34(4): 711-728. ]
doi: 10.11821/dlyj201504010 |
|
[38] |
赵静湉, 陈彦光, 李双成. 京津冀城市用地形态的双分形特征及其演化[J]. 地理科学进展, 2019, 38(1): 77-87.
doi: 10.18306/dlkxjz.2019.01.007 |
[ Zhao Jingtian, Chen Yanguang, Li Shuangcheng. Bi-fractal structure and evolution of the Beijing-Tianjin-Hebei region urban land-use patterns. Progress in Geography, 2019, 38(1): 77-87. ]
doi: 10.18306/dlkxjz.2019.01.007 |
|
[39] |
Ye X Y, Rey S. A framework for exploratory space-time analysis of economic data[J]. The Annals of Regional Science, 2013, 50(1): 315-339.
doi: 10.1007/s00168-011-0470-4 |
[40] |
潘竟虎, 张永年. 中国能源碳足迹时空格局演化及脱钩效应[J]. 地理学报, 2021, 76(1): 206-222.
doi: 10.11821/dlxb202101016 |
[ Pan Jinghu, Zhang Yongnian. Spatiotemporal patterns of energy carbon footprint and decoupling effect in China. Acta Geographica Sinica, 2021, 76(1): 206-222. ]
doi: 10.11821/dlxb202101016 |
|
[41] | 纪小美, 王婷, 陶卓民, 等. 时空交互视角下的中国入境客流分布动态分析[J]. 人文地理, 2016, 31(4): 153-160. |
[ Ji Xiaomei, Wang Ting, Tao Zhuomin, et al. Distributional dynamics of China's inbound tourist flow: Under the view of spatial-temporal interaction. Human Geography, 2016, 31(4): 153-160. ] | |
[42] | 许源, 陶卓民, 纪小美, 等. 京津冀地区旅游客流的时空演变特征[J]. 南京师大学报(自然科学版), 2018, 41(1): 121-129. |
[ Xu Yuan, Tao Zhuomin, Ji Xiaomei, et al. Spatial-temporal evolution characteristics of tourism flow in Beijing-Tianjin-Hebei area. Journal of Nanjing Normal University ( Natural Science Edition), 2018, 41(1): 121-129. ] | |
[43] | 李建豹, 黄贤金, 揣小伟, 等. 江苏省人口城镇化与能源消费CO2排放耦合协调度时空格局及影响因素[J]. 经济地理, 2021, 41(5): 57-64. |
[ Li Jianbao, Huang Xianjin, Chuai Xiaowei, et al. Spatial-temporal pattern and influencing factors of coupling coordination degree between urbanization of population and CO2 emissions of energy consumption in Jiangsu Province. Economic Geography, 2021, 41(5): 57-64. ]
doi: 10.2307/141856 |
|
[44] |
Guan Q, An H Z, Wang K M, et al. Functional trade patterns and their contributions to international photovoltaic trade revealed by network motifs[J]. Energy, 2020, 195(4): 116989. doi: 10.1016/j.energy.2020.116989.
doi: 10.1016/j.energy.2020.116989 |
[45] | Scott J. Social network analysis: A handbook[M]. 2nd ed. London, UK: SAGE Publications, 2000. |
[46] | 张明倩, 芦宇航. “一带一路”跨国专利合作网络的局部特征与角色定位[J]. 中国科技资源导刊, 2020, 52(4): 102-110. |
[ Zhang Mingqian, Lu Yuhang. Micro-features of multinational patent cooperation network and role-playing of countries on "One Belt and One Road". China Science & Technology Resources Review, 2020, 52(4): 102-110. ] |
[1] | 杜文瑄, 施益军, 徐丽华, 翟国方, 陈伟, 陆张维. 风险扰动下的城市经济韧性多维测度与分析——以长三角地区为例[J]. 地理科学进展, 2022, 41(6): 956-971. |
[2] | 李语杨, 谷人旭, 王腾飞, 毕学成. 长三角地区知识守门人空间演变与作用机制研究[J]. 地理科学进展, 2021, 40(6): 925-936. |
[3] | 杨清可, 段学军, 王磊, 王雅竹. 长三角地区城市土地利用与生态环境效应的交互作用机制研究[J]. 地理科学进展, 2021, 40(2): 220-231. |
[4] | 韩刚, 史修松, 刘志敏. 基于ERGM模型的江苏省城市网络紧凑性形成机理研究[J]. 地理科学进展, 2021, 40(12): 2025-2034. |
[5] | 范擎宇, 杨山. 长三角地区城镇化协调发展的空间特征及形成机理[J]. 地理科学进展, 2021, 40(1): 124-134. |
[6] | 孙彪, 杨山. 长三角地区城市创新投入要素的经济溢出效应及趋同格局[J]. 地理科学进展, 2021, 40(1): 147-160. |
[7] | 燕月, 陈爽, 李广宇, 余成. 城市紧凑性测度指标研究及典型城市分析——以南京、苏州建设用地紧凑度为例[J]. 地理科学进展, 2013, 32(5): 733-742. |
[8] | 王承云, 张婷婷. 长三角地区研发产业的空间结构演化[J]. 地理科学进展, 2012, 31(8): 989-996. |
[9] | 李少星,颜培霞,蒋 波. 全球化背景下地域分工演进对城市化空间格局的影响机理[J]. 地理科学进展, 2010, 29(8): 943-951. |
[10] | 吴威, 曹有挥, 梁双波. 20世纪80年代以来长三角地区综合交通可达性的时空演化[J]. 地理科学进展, 2010, 29(5): 619-626. |
|