地理科学进展 ›› 2022, Vol. 41 ›› Issue (10): 1868-1881.doi: 10.18306/dlkxjz.2022.10.008
何珮婷(), 刘丹媛, 卢思言, 何小钰, 李桦, 杨柳, 林锦耀*(
)
收稿日期:
2022-02-21
修回日期:
2022-07-03
出版日期:
2022-10-28
发布日期:
2022-12-28
通讯作者:
*林锦耀(1989— ),男,广东广州人,博士,副教授,主要从事地理建模与遥感应用研究。E-mail: ljy2012@gzhu.edu.cn作者简介:
何珮婷(2001— ),女,广东韶关人,本科生,主要从事资源环境与城乡规划研究。E-mail: 1901500026@e.gzhu.edu.cn
基金资助:
HE Peiting(), LIU Danyuan, LU Siyan, HE Xiaoyu, LI Hua, YANG Liu, LIN Jinyao*(
)
Received:
2022-02-21
Revised:
2022-07-03
Online:
2022-10-28
Published:
2022-12-28
Supported by:
摘要:
城市内涝是最常见的自然灾害之一,深入剖析其影响因素并进行风险评估对内涝防治具有重要意义。以往研究表明,城市内涝是由自然因素(如地形)和人为因素(如土地利用)共同引起的。在土地利用方面,相关学者主要关注二维空间因素对内涝的影响,较少顾及土地利用的三维建筑格局。此外,在研究方法的选取上,尽管已有学者利用随机森林、神经网络等模型对内涝影响因素进行研究,然而传统方法在负样本(不发生内涝的地点)的选取上存在不确定性。为解决这2点不足,论文引入最大熵(MAXENT)模型,以深圳市为研究案例,通过MAXENT剖析各潜在影响因子与内涝风险的关系。结果表明,影响内涝风险的主导环境因子为不透水面比例、绿地比例、人口密度、暴雨峰值雨量、地表起伏度。而对内涝发生有重要影响的三维因子为容积率、建筑形状系数、平均高度。通过MAXENT评估的内涝风险结果可知,深圳潜在高风险区的面积约为491 km²,占市域面积的24.58%,主要位于龙华区、南山区、龙岗区北部、光明区、福田区。进一步对潜在高风险区进行空间自相关分析,结果发现过往并不存在内涝点的南山区北部、福田区西部、罗湖区中部等部分区域风险概率出现高—高集聚现象,表明上述地区的内涝风险会受到周围地区的正向影响,因此在内涝的监测与防治中应当重点关注高风险地区以实现更精准的防控。由于内涝风险评估是城市灾害管理的重要组成部分,因此论文提出的相关建议不仅可作为防灾减灾的重要参考依据,还能为国土空间规划的优化提供新思路。
何珮婷, 刘丹媛, 卢思言, 何小钰, 李桦, 杨柳, 林锦耀. 基于最大熵模型的深圳市内涝影响因素分析及内涝风险评估[J]. 地理科学进展, 2022, 41(10): 1868-1881.
HE Peiting, LIU Danyuan, LU Siyan, HE Xiaoyu, LI Hua, YANG Liu, LIN Jinyao. Influencing factors of waterlogging and waterlogging risks in Shenzhen City based on MAXENT[J]. PROGRESS IN GEOGRAPHY, 2022, 41(10): 1868-1881.
[1] |
Lin L, Wu Z N, Liang Q H. Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework[J]. Natural Hazards, 2019, 97(2): 455-475.
doi: 10.1007/s11069-019-03615-2 |
[2] | 薛丰昌, 朱一晗, 顾人颖, 等. Floodarea模型的城市内涝可视化数值模拟[J]. 测绘科学, 2020, 45(8): 181-187, 198. |
[Xue Fengchang, Zhu Yihan, Gu Renying, et al. Visual numerical simulation of urban waterlogging based on Floodarea model. Science of Surveying and Mapping, 2020, 45(8): 181-187, 198. ] | |
[3] |
Bertilsson L, Wiklund K, de Moura Tebaldi I, et al. Urban flood resilience: A multi-criteria index to integrate flood resilience into urban planning[J]. Journal of Hydrology, 2019, 573: 970-982.
doi: 10.1016/j.jhydrol.2018.06.052 |
[4] |
胡文燕, 李梦雅, 王军, 等. 暴雨内涝影响下的城市道路交通拥挤特征识别[J]. 地理科学进展, 2018, 37(6): 772-780.
doi: 10.18306/dlkxjz.2018.06.004 |
[Hu Wenyan, Li Mengya, Wang Jun, et al. Urban traffic congestion caused by rainstorms and innudation. Progress in Geography, 2018, 37(6): 772-780. ]
doi: 10.18306/dlkxjz.2018.06.004 |
|
[5] | 王志寰, 朱立俊, 王建中, 等. 长江倒灌鄱阳湖原因及发生条件的量化指标[J]. 水科学进展, 2020, 31(2): 203-213. |
[Wang Zhihuan, Zhu Lijun, Wang Jianzhong, et al. Reverse flow from Yangtze River to Poyang Lake: Causes and occurrence conditions quantization index. Advances in Water Science, 2020, 31(2): 203-213. ] | |
[6] | 赵广英, 李晨, 刘淑娟. 城市内涝问题的规划改善途径研究: 以湖南省为例[J]. 现代城市研究, 2016(12): 51-61. |
[Zhao Guangying, Li Chen, Liu Shujuan. Urban waterlogging planning research of improving ways: A case study of Hunan Province. Modern Urban Research, 2016(12): 51-61. ] | |
[7] |
黄华兵, 王先伟, 柳林. 城市暴雨内涝综述特征、机理、数据与方法[J]. 地理科学进展, 2021, 40(6): 1048-1059.
doi: 10.18306/dlkxjz.2021.06.014 |
[Huang Huabing, Wang Xianwei, Liu Lin. A review on urban pluvial floods: Characteristics, mechanisms, data, and research methods. Progress in Geography, 2021, 40(6): 1048-1059. ]
doi: 10.18306/dlkxjz.2021.06.014 |
|
[8] | 唐钰嫣, 潘耀忠, 范津津, 等. 土地利用景观格局对城市内涝灾害风险的影响研究[J]. 水利水电技术(中英文), 2021, 52(12): 1-11. |
[Tang Yuyan, Pan Yaozhong, Fan Jinjin, et al. The influence of landscape pattern on the risk of urban waterlogging disaster. Water Resources and Hydropower Engineering, 2021, 52(12): 1-11. ] | |
[9] |
赵丽元, 韦佳伶. 城市建设对暴雨内涝空间分布的影响研究: 以武汉市主城区为例[J]. 地理科学进展, 2020, 39(11): 1898-1908.
doi: 10.18306/dlkxjz.2020.11.010 |
[Zhao Liyuan, Wei Jialing. Impact of urban development on the risk of flooding: A case study of Wuhan City, China. Progress in Geography, 2020, 39(11): 1898-1908. ]
doi: 10.18306/dlkxjz.2020.11.010 |
|
[10] | 李孝永, 匡文慧. 北京城市土地利用/覆盖变化及其对雨洪调节服务的影响[J]. 生态学报, 2020, 40(16): 5525-5533. |
[Li Xiaoyong, Kuang Wenhui. Urban land use/cover change and its impact on urban flood regulation ecosystem service in Beijing. Acta Ecologica Sinica, 2020, 40(16): 5525-5533. ] | |
[11] |
梁志承, 赵耀龙, 付迎春. 耦合蚁群算法和SCS-CN水文模型的城市不透水面空间格局优化[J]. 地球信息科学学报, 2017, 19(10): 1315-1326.
doi: 10.3724/SP.J.1047.2017.01315 |
[Liang Zhicheng, Zhao Yaolong, Fu Yingchun. Optimization of spatial pattern of urban imperviousness based on the integration of SCS-CN hydrological model and the ant colony algorithm. Journal of Geo-information Science, 2017, 19(10): 1315-1326. ] | |
[12] | 张华, 尹占娥, 殷杰, 等. 基于土地利用的城市暴雨内涝灾害脆弱性评估: 以上海浦东新区为例[J]. 上海师范大学学报(自然科学版), 2011, 40(4): 427-434. |
[Zhang Hua, Yin Zhane, Yin Jie, et al. Vulnerability assessment of urban rainstorm water-logging in pudong of Shanghai in terms of land use. Journal of Shanghai Normal University (Natural Sciences), 2011, 40(4): 427-434. ] | |
[13] |
李彬烨, 赵耀龙, 付迎春. 广州城市暴雨内涝时空演变及建设用地扩张的影响[J]. 地球信息科学学报, 2015, 17(4): 445-450.
doi: 10.3724/SP.J.1047.2015.00445 |
[Li Binye, Zhao Yaolong, Fu Yingchun. Spatio-temporal characteristics of urban storm waterlogging in Guangzhou and the impact of urban growth. Journal of Geo-information Science, 2015, 17(4): 445-450. ] | |
[14] | 叶超凡, 张一驰, 程维明, 等. 北京市区快速城市化进程中的内涝现状及成因分析[J]. 中国防汛抗旱, 2018, 28(2): 19-25. |
[Ye Chaofan, Zhang Yichi, Cheng Weiming, et al. Analysis on urban pluvial floods and causes during rapid development in Beijing. China Flood & Drought Management, 2018, 28(2): 19-25. ] | |
[15] |
吴健生, 张朴华. 城市景观格局对城市内涝的影响研究: 以深圳市为例[J]. 地理学报, 2017, 72(3): 444-456.
doi: 10.11821/dlxb201703007 |
[Wu Jiansheng, Zhang Puhua. The effect of urban landscape pattern on urban waterlogging. Acta Geographica Sinica, 2017, 72(3): 444-456. ]
doi: 10.11821/dlxb201703007 |
|
[16] |
Bautista S, Mayor Á G, Bourakhouadar J, et al. Plant spatial pattern predicts hillslope semiarid runoff and erosion in a Mediterranean landscape[J]. Ecosystems, 2007, 10(6): 987-998.
doi: 10.1007/s10021-007-9074-3 |
[17] | 李柳华, 刘小平, 欧金沛, 等. 基于随机森林模型的城市扩张三维特征时空变化及机制分析[J]. 地理与地理信息科学, 2019, 35(2): 53-60. |
[Li Liuhua, Liu Xiaoping, Ou Jinpei, et al. Spatio-temporal changes and mechanism analysis of urban 3D expansion based on Random Forest Model. Geography and Geo-Information Science, 2019, 35(2): 53-60. ] | |
[18] | 于晓雨, 许刚, 刘樾, 等. 长江三角洲地区城市建筑三维形态对地表热环境的影响[J]. 中国环境科学, 2021, 41(12): 5806-5816. |
[Yu Xiaoyu, Xu Gang, Liu Yue, et al. Influences of 3D features of buildings on land surface temperature: A case study in the Yangtze River Delta urban agglomeration. China Environmental Science, 2021, 41(12): 5806-5816. ] | |
[19] |
Xu Y, Liu M, Hu Y M, et al. Analysis of three-dimensional space expansion characteristics in old industrial area renewal using GIS and Barista: A case study of Tiexi District, Shenyang, China[J]. Sustainability, 2019, 11(7): 1860. doi: 10.3390/su11071860.
doi: 10.3390/su11071860 |
[20] | 陈探, 刘淼, 胡远满, 等. 沈阳城市三维景观空间格局分异特征[J]. 生态学杂志, 2015, 34(9): 2621-2627. |
[Chen Tan, Liu Miao, Hu Yuanman, et al. Differentiation characteristics of three-dimensional landscape pattern in Shenyang. Chinese Journal of Ecology, 2015, 34(9): 2621-2627. ] | |
[21] |
乔伟峰, 刘彦随, 王亚华, 等. 2000年以来南京城市三维空间扩展特征[J]. 地理研究, 2015, 34(4): 666-676.
doi: 10.11821/dlyj201504006 |
[Qiao Weifeng, Liu Yansui, Wang Yahua, et al. Analysis on the characteristics of three-dimensional urban space expansion in Nanjing since 2000. Geographical Research, 2015, 34(4): 666-676. ]
doi: 10.11821/dlyj201504006 |
|
[22] |
杨俊, 国安东, 席建超, 等. 城市三维景观格局时空分异特征研究: 以大连市中山区为例[J]. 地理学报, 2017, 72(4): 646-656.
doi: 10.11821/dlxb201704007 |
[Yang Jun, Guo Andong, Xi Jianchao, et al. Spatial-temporal differentiation of three-dimensional urban landscape pattern: A case study of Zhongshan District in Dalian. Acta Geographica Sinica, 2017, 72(4): 646-656. ]
doi: 10.11821/dlxb201704007 |
|
[23] |
刘勇, 张韶月, 柳林, 等. 智慧城市视角下城市洪涝模拟研究综述[J]. 地理科学进展, 2015, 34(4): 494-504.
doi: 10.11820/dlkxjz.2015.04.011 |
[Liu Yong, Zhang Shaoyue, Liu Lin, et al. Research on urban flood simulation: A review from the smart city perspective. Progress in Geography, 2015, 34(4): 494-504. ]
doi: 10.11820/dlkxjz.2015.04.011 |
|
[24] |
张会, 李铖, 程炯, 等. 基于“H-E-V”框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(2): 175-190.
doi: 10.18306/dlkxjz.2019.02.003 |
[Zhang Hui, Li Cheng, Cheng Jiong, et al. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability. Progress in Geography, 2019, 38(2): 175-190. ]
doi: 10.18306/dlkxjz.2019.02.003 |
|
[25] |
Tang X Z, Shu Y Q, Lian Y Q, et al. A spatial assessment of urban waterlogging risk based on a Weighted Naïve Bayes classifier[J]. Science of the Total Environment, 2018, 630: 264-274.
doi: 10.1016/j.scitotenv.2018.02.172 |
[26] | 张菲菲, 谭琳珊, 赵强强, 等. 基于水动力模型的城市内涝灾害研究: 以宁波市白鹤社区为例[J]. 自然灾害学报, 2021, 30(6): 209-218. |
[Zhang Feifei, Tan Linshan, Zhao Qiangqiang, et al. Research on urban waterlogging disaster based on hydrodynamic model: Take Baihe community in Ningbo City as an example. Journal of Natural Disasters, 2021, 30(6): 209-218. ] | |
[27] |
朱阿兴, 闾国年, 周成虎, 等. 地理相似性: 地理学的第三定律?[J]. 地球信息科学学报, 2020, 22(4): 673-679.
doi: 10.12082/dqxxkx.2020.200069 |
[Zhu Axing, Lv Guonian, Zhou Chenghu, et al. Geographic similarity: Third law of geography? Journal of Geo-information Science, 2020, 22(4): 673-679. ] | |
[28] | 吴小君, 方秀琴, 任立良, 等. 基于随机森林的山洪灾害风险评估: 以江西省为例[J]. 水土保持研究, 2018, 25(3): 142-149. |
[Wu Xiaojun, Fang Xiuqin, Ren Liliang, et al. Risk assessment of mountain torrents disaster based on Random Forest: A case study in Jiangxi Province. Research of Soil and Water Conservation, 2018, 25(3): 142-149. ] | |
[29] |
Phillips S J, Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161-175.
doi: 10.1111/j.0906-7590.2008.5203.x |
[30] |
Yue Y J, Zhang P Y, Shang Y R. The potential global distribution and dynamics of wheat under multiple climate change scenarios[J]. Science of the Total Environment, 2019, 688: 1308-1318.
doi: 10.1016/j.scitotenv.2019.06.153 |
[31] |
Gong P, Wang J, Yu L, et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 2013, 34(7): 2607-2654.
doi: 10.1080/01431161.2012.748992 |
[32] |
Zhang P F, Hu Y M, Xiong Z P. Extraction of three-dimensional architectural data from QuickBird images[J]. Journal of the Indian Society of Remote Sensing, 2014, 42(2): 409-416
doi: 10.1007/s12524-013-0315-y |
[33] | 何文文, 侯英姿. 多指标下大连市金普新区城市形态分析[J]. 国土与自然资源研究, 2017(6): 54-55. |
[He Wenwen, Hou Yingzi. The analysis of Jinpu new area in Dalian City by multicriteria. Territory & Natural Resources Study, 2017(6): 54-55. ] | |
[34] | 周伟奇, 田韫钰. 城市三维空间形态的热环境效应研究进展[J]. 生态学报, 2020, 40(2): 416-427. |
[Zhou Weiqi, Tian Yunyu. Effects of urban three-dimensional morphology on thermal environment: A review. Acta Ecologica Sinica, 2020, 40(2): 416-427. ] | |
[35] |
Tang R, Blangiardo M, Gulliver J. Using building heights and street configuration to enhance intraurban PM10, NO(X), and NO2 land use regression models[J]. Environmental Science & Technology, 2013, 47(20): 11643-11650.
doi: 10.1021/es402156g |
[36] |
麦鉴锋, 冼宇阳, 刘桂林. 气候变化情景下广东省降雨诱发型滑坡灾害潜在分布及预测[J]. 地球信息科学学报, 2021, 23(11): 2042-2054.
doi: 10.12082/dqxxkx.2021.210182 |
[Mai Jianfeng, Xian Yu-yang, Liu Guilin. Predicting potential rainfall-triggered landslides sites in Guangdong Province (China) using MaxEnt Model under climate changes scenarios. Journal of Geo-information Science, 2021, 23(11): 2042-2054. ] | |
[37] |
Jaynes E T. On the rationale of maximum entropy methods[J]. Proceedings of the IEEE, 1982, 70(9): 939-952.
doi: 10.1109/PROC.1982.12425 |
[38] | 宋明顺, 杨铭, 方兴华. 基于最大熵分布的控制图改进与评价研究[J]. 中国管理科学, 2019, 27(12): 208-216. |
[Song Mingshun, Yang Ming, Fang Xinghua. Improved control charts based on maximum entropy and their evaluations. Chinese Journal of Management Science, 2019, 27(12): 208-216. ] | |
[39] |
Soilhi Z, Sayari N, Benalouache N, et al. Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model[J]. Ecological Informatics, 2022, 68: 101533. doi: 10.1016/j.ecoinf.2021.101533.
doi: 10.1016/j.ecoinf.2021.101533 |
[40] | 李航. 统计学习方法[M]. 2版. 北京: 清华大学出版社, 2019: 80-83. |
[Li Hang. Statistical methods. 2nd ed. Beijing, China: Tsinghua University Press, 2019: 80-83. ] | |
[41] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324 |
[42] | 郭玉宝, 池天河, 彭玲, 等. 利用随机森林的高分一号遥感数据进行城市用地分类[J]. 测绘通报, 2016(5): 73-76. |
[Guo Yubao, Chi Tianhe, Peng Ling, et al. Classification of GF-1 remote sensing image based on Random Forests for urban land-use. Bulletin of Surveying and Mapping, 2016(5): 73-76. ] | |
[43] | 任平, 吴涛, 周介铭. 基于GIS和空间自相关模型的耕地空间分布格局及变化特征分析: 以成都市龙泉驿区为例[J]. 中国生态农业学报, 2016, 24(3): 325-334. |
[Ren Ping, Wu Tao, Zhou Jieming. Analysis of spatial distribution pattern and evolutionary characteristics of cultivated lands based on spatial autocorrelation model and GIS platform: A case study of Longquanyi District, Chengdu, China. Chinese Journal of Eco-Agriculture, 2016, 24(3): 325-334. ] | |
[44] | 颜明艳, 李琼珍, 宋洁, 等. 基于MAXENT模型评估北部湾潮间带中国鲎和圆尾鲎稚鲎的潜在地理分布及种群保育对策[J]. 生态学报, 2019, 39(9): 3100-3109. |
[Yan Mingyan, Li Qiongzhen, Song Jie, et al. Prediction of potential distribution areas of Chinese horseshoe crab and mangrove horseshoe crab in the Beibu Gulf of Guangxi based on MAXENT model and their population conservation strategies. Acta Ecologica Sinica, 2019, 39(9): 3100-3109. ] | |
[45] | 曹倩, 高庆波, 郭万军, 等. 基于MaxEnt模拟人类活动与环境因子对青藏高原特有植物祁连獐牙菜潜在分布的影响[J]. 植物科学学报, 2021, 39(1): 22-31. |
[Cao Qian, Gao Qingbo, Guo Wanjun, et al. Impacts of human activities and environmental factors on potential distribution of Swertia przewalskii Pissjauk., an endemic plant in Qing-Tibetan Plateau, using MaxEnt. Plant Science Journal, 2021, 39(1): 22-31. ] | |
[46] | 李安, 李良涛, 高萌萌, 等. 基于MaxEnt模型和气候变化情景入侵种黄顶菊在中国的分布区预测[J]. 农学学报, 2020, 10(1): 60-67, 76. |
[Li An, Li Liangtao, Gao Mengmeng, et al. Distribution prediction of invasive species flaveria bidentis in China: Based on MaxEnt model and climate change scenario. Journal of Agriculture, 2020, 10(1): 60-67, 76. ] | |
[47] | 张海行, 张伟, 杨文辉, 等. 基于水力排水模型的宁波海绵试点区内涝风险评估[J]. 中国给水排水, 2020, 36(12): 8-13. |
[Zhang Haixing, Zhang Wei, Yang Wenhui, et al. Assessment of urban waterlogging risk in Ningbo sponge city pilot area based on hydraulic drainage model. China Water & Wastewater, 2020, 36(12): 8-13. ] | |
[48] |
Lin J Y, He X Y, Lu S Y, et al. Investigating the influence of three-dimensional building configuration on urban pluvial flooding using random forest algorithm[J]. Environmental Research, 2021, 196: 110438. doi: 10.1016/j.envres.2020.110438.
doi: 10.1016/j.envres.2020.110438 |
[49] | Mojaddadi H, Pradhan B, Nampak H, et al. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS[J]. Geomatics, Natural Hazards & Risk, 2017, 8(2): 1080-1102. |
[50] | 赖成光, 陈晓宏, 赵仕威, 等. 基于随机森林的洪灾风险评价模型及其应用[J]. 水利学报, 2015, 46(1): 58-66. |
[Lai Chengguang, Chen Xiaohong, Zhao Shiwei, et al. A flood risk assessment model based on Random Forest and its application. Journal of Hydraulic Engineering, 2015, 46(1): 58-66. ] | |
[51] |
Tang X Z, Li J F, Liu W, et al. A method to increase the number of positive samples for machine learning-based urban waterlogging susceptibility assessments[J]. Stochastic Environmental Research and Risk Assessment, 2022, 36: 2319-2336.
doi: 10.1007/s00477-021-02035-8 |
[52] |
Tang X Z, Hong H Y, Shu Y Q, et al. Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples[J]. Journal of Hydrology, 2019, 576: 583-595.
doi: 10.1016/j.jhydrol.2019.06.058 |
[1] | 姜丽, 於家, 温家洪, 唐进, 齐蔓菲, 王璐阳, 张敏. 土地利用变化情景下杭州湾北岸极端洪灾风险评估[J]. 地理科学进展, 2021, 40(8): 1355-1370. |
[2] | 李博闻, 黄正东, 蒯希, 于溪. 基于空间公平理论的公共交通服务评价——以深圳市为例[J]. 地理科学进展, 2021, 40(6): 958-966. |
[3] | 张琳, 周素红, 关美宝, 陈菲. 城市公交车微环境对乘客舒适度的非线性影响[J]. 地理科学进展, 2021, 40(6): 967-979. |
[4] | 王军, 谭金凯. 气候变化背景下中国沿海地区灾害风险研究与应对思考[J]. 地理科学进展, 2021, 40(5): 870-882. |
[5] | 张琍, 李斌, 阳文静, 李琼. 基于时序遥感的庐山自然保护区植被分类及其变化分析[J]. 地理科学进展, 2021, 40(4): 703-712. |
[6] | 马恒, 张钢锋, 史培军. 畜牧业雪灾致灾成害过程和风险评估研究进展与展望[J]. 地理科学进展, 2021, 40(12): 2116-2129. |
[7] | 谢铖, 黄波, 刘晓倩, 周涛, 王宇. 基于手机定位数据的深圳市热浪人口暴露度分析[J]. 地理科学进展, 2020, 39(2): 231-242. |
[8] | 赵丽元, 韦佳伶. 城市建设对暴雨内涝空间分布的影响研究——以武汉市主城区为例[J]. 地理科学进展, 2020, 39(11): 1898-1908. |
[9] | 方佳毅, 史培军. 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望[J]. 地理科学进展, 2019, 38(5): 625-636. |
[10] | 张会, 李铖, 程炯, 吴志峰, 吴艳艳. 基于“H-E-V”框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(2): 175-190. |
[11] | 张宁, 王大为. 基于风险地形建模的毒品犯罪风险评估和警务预测[J]. 地理科学进展, 2018, 37(8): 1131-1139. |
[12] | 徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018, 37(7): 923-932. |
[13] | 柳林, 刘文娟, 廖薇薇, 余洪杰, 姜超, 林荣平, 纪佳楷, 张政. 基于随机森林和时空核密度方法的不同周期犯罪热点预测对比[J]. 地理科学进展, 2018, 37(6): 761-771. |
[14] | 孟晖, 李春燕, 张若琳, 李亚民. 京津冀地区县域单元地质灾害风险评估[J]. 地理科学进展, 2017, 36(3): 327-334. |
[15] | 谭敏, 刘凯, 柳林, 朱远辉, 王大山. 基于随机森林模型的珠江三角洲30 m格网人口空间化[J]. 地理科学进展, 2017, 36(10): 1304-1312. |
|