地理科学进展 ›› 2022, Vol. 41 ›› Issue (7): 1261-1273.doi: 10.18306/dlkxjz.2022.07.010

• 研究论文 • 上一篇    下一篇

一种新的客源地集中指数(tourCI)与实证分析

邢倩1(), 李仁杰1,2, 郭风华3,4,*(), 李晓风1   

  1. 1.河北师范大学地理科学学院,石家庄 050024
    2.河北省环境演变与生态建设实验室,石家庄 050024
    3.河北省科学院地理科学研究所,石家庄 050011
    4.河北省地理信息开发应用技术创新中心,石家庄 050011
  • 收稿日期:2022-01-05 修回日期:2022-03-17 出版日期:2022-07-28 发布日期:2022-09-28
  • 通讯作者: *郭风华(1974— ),女,河北任丘人,副研究员,主要从事旅游地理信息建模研究。E-mail: guo_yunxin@126.com
  • 作者简介:邢倩(1987— ),女,河北石家庄人,博士生,主要研究方向为人文时空信息挖掘与过程模拟。E-mail: Angelina870813@yeah.net
  • 基金资助:
    国家自然科学基金项目(41471127);河北省高层次人才资助项目(A2016001130);河北省在读研究生创新能力培养资助项目(CXZZBS2021060)

A new tourist source concentration index (tourCI) and empirical analysis

XING Qian1(), LI Renjie1,2, GUO Fenghua3,4,*(), LI Xiaofeng1   

  1. 1. College of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
    2. Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050024, China
    3. Hebei Institute of Geographical Sciences, Shijiazhuang 050011, China
    4. Hebei Technology Innovation Center for Geographic Information Application, Shijiazhuang 050011, China
  • Received:2022-01-05 Revised:2022-03-17 Online:2022-07-28 Published:2022-09-28
  • Supported by:
    National Natural Science Foundation of China(41471127);Foundation for Talent Training Project in Hebei Province(A2016001130);Hebei Province Graduate Student Innovation Ability Training Funding Project(CXZZBS2021060)

摘要:

客源地分布的集聚特征是客源市场空间结构研究的重要内容。针对现有客源集中指数不能横向对比及难以解释驱动因素的问题,论文提出了支持引入不同影响因子参数的客源地集中指数“tourCI”计算方法,建立了基于tourCI指数的客源地空间结构解释概念框架,给出tourCI的多维度描述方式和意义解析,以测算不同影响因素下的客源地分布集聚特征。以大理古城位置微博签到提取的客源数据进行实证研究,结果表明:基于政区维度的tourCI反映出云南省内本地客源对大理古城客源分布特征产生了重要影响,省外客源分布相对均衡;基于距离维度的tourCI刻画了大理古城客源分布随目的地距离的变化规律,由近及远呈现“弱—强—弱—均衡”的指数变化模式;经济维度tourCI显示来自一线城市的游客高度集中在经济水平较高地区,来自新一线城市的游客分布相对均衡,其余城市的客源分布受经济影响较大。理论与实证研究证明了tourCI指数对客源地空间结构集聚特征及驱动因素具有较好的解析能力,有助于丰富旅游地理研究的方法体系。

关键词: 客源地, 空间结构, tourCI, 集中指数, 大理古城

Abstract:

Agglomeration characteristics of tourist sources are an important content of the research on the spatial structure of tourist source market, but the existing customer source concentration indices cannot be compared horizontally and it is difficult to explain the driving factors. In this study, we proposed a calculation method of tourist source concentration index tourCI that supports the introduction of different influencing factors, established a conceptual framework of tourist source spatial structure interpretation based on the tourCI index, and provided the multi-dimensional description and meaning analysis of tourCI to calculate the distribution and agglomeration characteristics of tourist source areas under the influence of different factors. Taking Dali ancient town as an example, we used the Sina Weibo data to calculate tourCI based on administrative regions, which shows that local tourists in Yunnan Province have an important impact on the tourist source distribution characteristics of Dali ancient town, and the distribution of tourists outside Yunnan Province is relatively balanced. tourCI based on distance describes the variation of the distribution characteristics of tourist sources in Dali ancient town with the change of distance to the destination. From near to far the index of each distance segment shows a weak-strong-weak-equilibrium change pattern. The results of economic dimension show that tourists from the first tier cities are highly concentrated in areas with high economic development levels, and tourists from the new first tier cities are not significantly affected by economic factors and are evenly distributed. The distribution of tourist sources from second and third tier cities is greatly affected by economic factors. Theoretical and empirical analyses show that tourCI index has a good analytical capability for the agglomeration characteristics and driving factors of the spatial structure of tourist sources, which helps enrich the methods of tourism geography research.

Key words: tourist source, spatial structure, tourCI, concentration index, Dali ancient town