地理科学进展 ›› 2022, Vol. 41 ›› Issue (6): 1028-1040.doi: 10.18306/dlkxjz.2022.06.007
陈镘1,2,3(), 黄柏石1,2,3, 刘晔1,2,3,*(
)
收稿日期:
2021-10-22
修回日期:
2021-12-26
出版日期:
2022-06-28
发布日期:
2022-08-28
通讯作者:
*刘晔(1986— ),男,广东广州人,教授,博士生导师,主要研究方向为城市人居环境与居民健康福祉、城市化与人口流动、人才流动的机制与影响。E-mail: liuye25@mail.sysu.edu.cn作者简介:
陈镘(1998— ),女,广东潮州人,硕士生,主要研究方向为健康地理。E-mail: chenm253@mail2.sysu.edu.cn
基金资助:
CHEN Man1,2,3(), HUANG Baishi1,2,3, LIU Ye1,2,3,*(
)
Received:
2021-10-22
Revised:
2021-12-26
Online:
2022-06-28
Published:
2022-08-28
Supported by:
摘要:
中国生态文明建设和“健康中国”战略强调切实治理影响人口健康的环境问题,建设健康人居环境。论文基于2000年和2010年中国人口普查资料以及2005年和2015年各省级行政单元1%人口抽样调查等数据资料,论文使用探索性空间分析方法刻画中国城市人口死亡率的时空变化特征,并采用空间回归方法,揭示城市PM2.5的平均浓度对人口死亡率的影响及其空间溢出效应,以及社会经济因素对PM2.5—人口死亡率关联的调节效应。结果表明:① 中国城市人口死亡率的空间分布特征呈现明显的异质性,高死亡率地区早期集聚分布于西南地区,2005年后在西南地区、华北地区、华东地区和华中地区呈现逐渐集聚分布态势。低死亡率地区长期集中分布于西北地区、东北地区、长三角地区、珠三角地区和京津两市。② 人口死亡率的分布存在空间关联性,高—高类型地区早期集中分布于西南地区,后期向东扩展;低—低类型地区主要分布于北疆、内蒙古西部和广东省及其周边地区。③ 城市PM2.5浓度对人口死亡率具有显著的正向影响,并且对邻近地区的人口死亡率具有显著的空间溢出效应。④ 中国城市PM2.5浓度对人口死亡率的影响存在学历差异和城乡差异,地区高学历人群集聚可降低PM2.5的健康风险,城镇化发展进程缓慢则会加重PM2.5的健康风险。研究旨在为防范空气污染暴露导致的健康风险、建设健康人居环境提供科学依据。
陈镘, 黄柏石, 刘晔. PM2.5污染对中国人口死亡率的影响——基于346个城市面板数据的实证分析[J]. 地理科学进展, 2022, 41(6): 1028-1040.
CHEN Man, HUANG Baishi, LIU Ye. Effects of PM2.5 concentration on mortality in China: A study based on city-level panel data[J]. PROGRESS IN GEOGRAPHY, 2022, 41(6): 1028-1040.
表1
变量描述性统计
变量名 | 符号 | 2000年 平均值(标准差) | 2005年 平均值(标准差) | 2010年 平均值(标准差) | 2015年 平均值(标准差) |
---|---|---|---|---|---|
人口死亡率/‰ | mortality | 5.83 (1.13) | 5.96 (1.46) | 5.56 (1.31) | 5.04 (1.28) |
当年PM2.5/(μg/m3) | pm | 20.78 (11.95) | 33.17 (17.07) | 33.59 (18.15) | 33.23 (19.21) |
3年PM2.5均值/(μg/m3) | pm3 | 20.96 (10.60) | 30.56 (15.68) | 33.65 (17.76) | 33.39 (18.24) |
老年人口比重/% | older | 9.92 (1.90) | 12.23 (2.68) | 12.89 (2.81) | 15.61 (3.93) |
少儿人口比重/% | child | 23.73 (4.97) | 20.33 (4.87) | 17.31 (4.68) | 17.67 (6.10) |
大专及以上学历人口比重/% | edu | 3.34 (2.59) | 4.89 (3.58) | 7.76 (4.72) | 10.49 (6.17) |
城镇化率/% | urban | 36.94 (18.80) | 43.31 (18.24) | 47.58 (17.23) | 52.86 (14.91) |
人口密度/(人/km2) | pop | 343.12 (329.44) | 356.93 (333.02) | 369.66 (331.49) | 385.15 (357.95) |
人均GDP/元 | pgdp | 7742.18 (6598.64) | 14529.42 (11736.97) | 30832.91 (21342.19) | 48702.67 (28559.05) |
第二产业比重/% | secindust | 40.60 (12.99) | 44.27 (13.23) | 49.35 (11.90) | 45.40 (10.39) |
第三产业比重/% | terindust | 35.56 (7.48) | 37.04 (8.90) | 36.01 (9.11) | 41.46 (8.76) |
每万人医生数/(位/万人) | doctor | 15.21 (10.32) | 15.55 (7.26) | 18.30 (9.44) | 21.40 (10.67) |
年平均相对湿度/% | rh | 69.27 (10.37) | 66.08 (9.73) | 67.02 (10.03) | 68.56 (11.36) |
年平均温度/℃ | temp | 13.23 (5.62) | 13.30 (5.59) | 13.35 (5.64) | 13.88 (5.44) |
NDVI | ndvi | 0.41(0.14) | 0.40 (0.13) | 0.41 (0.14) | 0.44 (0.15) |
表2
空间滞后回归模型估计结果
变量 | 模型1: SLM 估计系数(标准差) | 直接效应 估计系数(标准差) | 间接效应 估计系数(标准差) | 总效应 估计系数(标准差) |
---|---|---|---|---|
pm | 0.906** (0.379) | 0.937** (0.396) | 0.364** (0.161) | 1.301** (0.547) |
older | 0.060*** (0.014) | 0.061*** (0.014) | 0.024*** (0.007) | 0.084*** (0.020) |
child | 0.006 (0.005) | 0.006 (0.005) | 0.002 (0.002) | 0.009 (0.007) |
edu | -0.044*** (0.009) | -0.044*** (0.009) | -0.017*** (0.005) | -0.062*** (0.013) |
urban | -0.004 (0.004) | -0.004 (0.004) | -0.002 (0.001) | -0.005 (0.005) |
ln pop | -0.088 (0.060) | -0.086 (0.061) | -0.034 (0.025) | -0.120 (0.085) |
ln pgdp | -0.137** (0.069) | -0.137** (0.069) | -0.053* (0.028) | -0.189** (0.095) |
secindust | -0.003 (0.005) | -0.003 (0.004) | -0.001 (0.002) | -0.004 (0.006) |
terindust | -0.011** (0.006) | -0.012** (0.005) | -0.005** (0.002) | -0.016** (0.008) |
doctor | 0.003 (0.003) | 0.003 (0.003) | 0.001 (0.001) | 0.004 (0.005) |
rh | -0.012 (0.010) | -0.013 (0.010) | -0.005 (0.004) | -0.018 (0.014) |
temp | -0.397*** (0.074) | -0.402*** (0.077) | -0.156*** (0.035) | -0.558*** (0.104) |
ndvi | -0.532 (1.134) | -0.618 (1.125) | -0.244 (0.455) | -0.861 (1.574) |
| 0.291*** (0.036) | |||
Log likelihood | -1400.340 | |||
N | 1384 |
表3
社会经济因素的调节效应分析
变量 | 模型2: SLM模型 估计系数(标准差) | 模型3: SLM模型 估计系数(标准差) | 模型4: SLM模型 估计系数(标准差) | 模型5: SLM模型 估计系数(标准差) |
---|---|---|---|---|
pm | 1.512*** (0.477) | 2.091*** (0.714) | 2.383 (1.681) | 1.425* (0.864) |
older | 0.061*** (0.014) | 0.061*** (0.014) | 0.061*** (0.014) | 0.061*** (0.014) |
child | 0.007 (0.005) | 0.006 (0.005) | 0.006 (0.005) | 0.006 (0.005) |
edu | -0.021 (0.014) | -0.040*** (0.010) | -0.042*** (0.009) | -0.043*** (0.009) |
urban | -0.004 (0.004) | 0.002 (0.005) | -0.004 (0.004) | -0.004 (0.004) |
ln pop | -0.092 (0.060) | -0.095 (0.060) | -0.091 (0.060) | -0.089 (0.060) |
ln pgdp | -0.158** (0.070) | -0.148** (0.069) | -0.111 (0.074) | -0.143** (0.069) |
secindust | -0.004 (0.005) | -0.004 (0.005) | -0.003 (0.005) | -0.003 (0.005) |
terindust | -0.012** (0.006) | -0.012** (0.006) | -0.012** (0.006) | -0.009 (0.007) |
doctor | 0.004 (0.003) | 0.004 (0.003) | 0.003 (0.003) | 0.003 (0.003) |
rh | -0.009 (0.010) | -0.010 (0.010) | -0.011 (0.010) | -0.011 (0.010) |
temp | -0.414*** (0.075) | -0.410*** (0.074) | -0.408*** (0.075) | -0.396*** (0.074) |
ndvi | -0.384 (1.135) | -0.373 (1.136) | -0.337 (1.154) | -0.508 (1.135) |
pm×edu | -0.061** (0.029) | |||
pm×urban | -0.022* (0.011) | |||
pm×ln pgdp | -0.140 (0.155) | |||
pm×terindust | -0.013 (0.019) | |||
| 0.287*** (0.036) | 0.287*** (0.036) | 0.290*** (0.036) | 0.291*** (0.036) |
| 0.434*** (0.017) | 0.434*** (0.017) | 0.435*** (0.017) | 0.435*** (0.017) |
Log likelihood | -1398.1478 | -1398.4257 | -1399.9333 | -1400.1161 |
N | 1384 | 1384 | 1384 | 1384 |
表4
稳健性检验结果
变量 | 模型6: SEM 估计系数(标准差) | 模型7: SLM 估计系数(标准差) | 模型8: SLM 估计系数(标准差) |
---|---|---|---|
pm | 1.164** (0.477) | ||
pm3 | 0.846* (0.477) | ||
pm_35 | 0.224*** (0.074) | ||
older | 0.069*** (0.016) | 0.067*** (0.013) | 0.063*** (0.013) |
child | 0.005 (0.006) | 0.006 (0.005) | 0.006 (0.005) |
edu | -0.050*** (0.010) | -0.043*** (0.009) | -0.043*** (0.009) |
urban | -0.004 (0.004) | -0.004 (0.004) | -0.004 (0.004) |
ln pop | -0.080 (0.066) | -0.087 (0.060) | -0.087 (0.060) |
ln pgdp | -0.223*** (0.075) | -0.145** (0.071) | -0.115* (0.068) |
secindust | -0.004 (0.005) | -0.002 (0.005) | -0.003 (0.005) |
terindust | -0.011* (0.006) | -0.011** (0.006) | -0.011** (0.006) |
doctor | 0.003 (0.003) | 0.003 (0.003) | 0.003 (0.003) |
rh | -0.020 (0.013) | -0.014 (0.010) | -0.015 (0.009) |
temp | -0.511*** (0.093) | -0.385*** (0.078) | -0.403*** (0.073) |
ndvi | -0.896 (1.385) | -1.113 (1.096) | -0.554 (1.115) |
| 0.296*** (0.038) | ||
| 0.298*** (0.036) | 0.297*** (0.036) | |
N | 1384 | 1384 | 1384 |
Log likelihood | -1401.978 | -1401.626 | -1398.653 |
[1] |
Yue H B, He C Y, Huang Q X, et al. Stronger policy required to substantially reduce deaths from PM2.5 pollution in China[J]. Nature Communications, 2020, 11(1): 1462. doi: 10.1038/s41467-020-15319-4.
doi: 10.1038/s41467-020-15319-4 |
[2] | 宋长青, 冷疏影. 地理科学三十年: 从经典到前沿[M]. 北京: 商务印书馆, 2016: 759-788. |
[ Song Changqing, Leng Shuying. The geographical sciences during 1986-2015: From the classics to the frontiers. Beijing, China: The Commercial Press, 2016: 759-788. ] | |
[3] | World Health Organization. Ambient air pollution: A global assessment of exposure and burden of disease[M]. Geneva, Switzerland: World Health Organization, 2016: 19-21. |
[4] | 郭杰, 肖纯凌. PM2.5对人群健康影响的流行病学研究进展[J]. 环境卫生学杂志, 2017, 7(2): 164-169. |
[ Guo Jie, Xiao Chunling. Progress on epidemiological study of PM2.5 effect to human health. Journal of Environmental Hygiene, 2017, 7(2): 164-169. ] | |
[5] |
Yang Y, Tang R, Qiu H, et al. Long term exposure to air pollution and mortality in an elderly cohort in Hong Kong[J]. Environment International, 2018, 117: 99-106.
doi: 10.1016/j.envint.2018.04.034 |
[6] |
Zhang F Y, Xu J, Zhang Z Y, et al. Ambient air quality and the effects of air pollutants on otolaryngology in Beijing[J]. Environmental Monitoring and Assessment, 2015, 187(8): 495. doi: 10.1007/s10661-015-4711-3.
doi: 10.1007/s10661-015-4711-3 |
[7] |
Lin H, Liu T, Xiao J, et al. Mortality burden of ambient fine particulate air pollution in six Chinese cities: Results from the Pearl River Delta study[J]. Environment International, 2016, 96: 91-97.
doi: 10.1016/j.envint.2016.09.007 |
[8] |
Di Q, Dai L, Wang Y, et al. Association of short-term exposure to air pollution with mortality in older adults[J]. JAMA, 2017, 318(24): 2446-2456.
doi: 10.1001/jama.2017.17923 |
[9] |
Hansell A, Ghosh R E, Blangiardo M, et al. Historic air pollution exposure and long-term mortality risks in England and Wales: Prospective longitudinal cohort study[J]. Thorax, 2016, 71(4): 330-338.
doi: 10.1136/thoraxjnl-2015-207111 pmid: 26856365 |
[10] |
Shi L H, Zanobetti A, Kloog I, et al. Low-concentration PM2.5 and mortality: Estimating acute and chronic effects in a population-based study[J]. Environmental Health Perspectives, 2016, 124(1): 46-52.
doi: 10.1289/ehp.1409111 |
[11] |
Lu F, Xu D Q, Cheng Y B, et al. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population[J]. Environmental Research, 2015, 136: 196-204.
doi: 10.1016/j.envres.2014.06.029 |
[12] |
Yang Y, Qi J L, Ruan Z L, et al. Changes in life expectancy of respiratory diseases from attaining daily PM2.5 standard in China: A nationwide observational study[J]. The Innovation, 2020, 1(3): 100064. doi: 10.1016/j.xinn.2020.100064.
doi: 10.1016/j.xinn.2020.100064 |
[13] | 孙猛, 李晓巍. 空气污染与公共健康: 基于省际面板数据的实证研究[J]. 人口学刊, 2017, 39(5): 5-13. |
[ Sun Meng, Li Xiaowei. Air pollution and public health: An empirical study based on provincial panel data. Population Journal, 2017, 39(5): 5-13. ] | |
[14] |
Chen Y, Ebenstein A, Greenstone M, et al. Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy[J]. PNAS, 2013, 110(32): 12936-12941.
doi: 10.1073/pnas.1300018110 |
[15] |
Xue T, Zhu T, Zheng Y, et al. Change in the number of PM2.5-attributed deaths in China from 2000 to 2010: Comparison between estimations from census-based epidemiology and pre-established exposure-response functions[J]. Environment International, 2019, 129: 430-437.
doi: 10.1016/j.envint.2019.05.067 |
[16] | 曾贤刚, 阮芳芳, 彭彦彦. 基于空间网格尺度的中国PM2.5污染健康效应空间分布[J]. 中国环境科学, 2019, 39(6): 2624-2632. |
[ Zeng Xiangang, Ruan Fangfang, Peng Yanyan. Health effects' spatial distribution analysis of PM2.5 pollution in China based on spatial grid scale. China Environmental Science, 2019, 39(6): 2624-2632. ] | |
[17] |
杨振, 敖荣军, 王念, 等. 中国环境污染的健康压力时空差异特征[J]. 地理科学, 2017, 37(3): 339-346.
doi: 10.13249/j.cnki.sgs.2017.03.003 |
[ Yang Zhen, Ao Rongjun, Wang Nian, et al. Spatio-temporal difference characteristic of pollution's health stress of China. Scientia Geographica Sinica, 2017, 37(3): 339-346. ]
doi: 10.13249/j.cnki.sgs.2017.03.003 |
|
[18] | 解垩. 中国地区间健康差异的因素分解[J]. 山西财经大学学报, 2011, 33(8): 11-24. |
[ Xie E. Analysis of regional differences in health in China. Journal of Shanxi Finance and Economics University, 2011, 33(8): 11-24. ] | |
[19] | 杨振, 刘会敏, 王晓霞. 中国人口健康分布的时空变化与影响因素[J]. 世界地理研究, 2017, 26(2): 161-168. |
[ Yang Zhen, Liu Huimin, Wang Xiaoxia. Spatio-temporal variations of population health distribution in China and its influencing factors. World Regional Studies, 2017, 26(2): 161-168. ] | |
[20] |
Li Y, Wei Y H D. A spatial-temporal analysis of health care and mortality inequalities in China[J]. Eurasian Geography and Economics, 2010, 51(6): 767-787.
doi: 10.2747/1539-7216.51.6.767 |
[21] | 李立清, 许荣. 中国居民健康水平的区域差异分析[J]. 卫生经济研究, 2015(1): 14-20. |
[ Li Liqing, Xu Rong. The regional difference of the resident's health level in China. Health Economic Research, 2015(1): 14-20. ] | |
[22] |
赵雪雁, 王伟军, 万文玉. 中国居民健康水平的区域差异: 2003—2013[J]. 地理学报, 2017, 72(4): 685-698.
doi: 10.11821/dlxb201704010 |
[ Zhao Xueyan, Wang Weijun, Wan Wenyu. Regional inequalities of residents' health level in China: 2003-2013. Acta Geographica Sinica, 2017, 72(4): 685-698. ]
doi: 10.11821/dlxb201704010 |
|
[23] | 齐良书. 经济、环境与人口健康的相互影响: 基于我国省区面板数据的实证分析[J]. 中国人口·资源与环境, 2008, 18(6): 169-173. |
[ Qi Liangshu. Interrelationship between growth, environment and population health: An empirical analysis based on China's provincial data. China Population, Resources and Environment, 2008, 18(6): 169-173. ] | |
[24] |
薛倩, 谢苗苗, 郭强, 等. 地理学视角下城市高温热浪脆弱性评估研究进展[J]. 地理科学进展, 2020, 39(4): 685-694.
doi: 10.18306/dlkxjz.2020.04.015 |
[ Xue Qian, Xie Miaomiao, Guo Qiang, et al. Research progress on urban heat wave vulnerability assessment: A geographical perspective. Progress in Geography, 2020, 39(4): 685-694. ]
doi: 10.18306/dlkxjz.2020.04.015 |
|
[25] |
Hu C Y, Yang X J, Gui S Y, et al. Residential greenness and birth outcomes: A systematic review and meta-analysis of observational studies[J]. Environmental Research, 2021, 193: 110599. doi: 10.1016/j.envres.2020.110599.
doi: 10.1016/j.envres.2020.110599 |
[26] |
Pearce J R, Richardson E A, Mitchell R J, et al. Environmental justice and health: The implications of the socio-spatial distribution of multiple environmental deprivation for health inequalities in the United Kingdom[J]. Transactions of the Institute of British Geographers, 2010, 35(4): 522-539.
doi: 10.1111/j.1475-5661.2010.00399.x |
[27] | 周素红, 张琳, 林荣平. 地理环境暴露与公众健康研究进展[J]. 科技导报, 2020, 38(7): 43-52. |
[ Zhou Suhong, Zhang Lin, Lin Rongping. Progress and prospect of the research on geographical environment exposure and public health. Science & Technology Review, 2020, 38(7): 43-52. ] | |
[28] | 杨林生, 李海蓉, 李永华, 等. 医学地理和环境健康研究的主要领域与进展[J]. 地理科学进展, 2010, 29(1): 31-44. |
[ Yang Linsheng, Li Hairong, Li Yonghua, et al. Progress of medical geography and environmental health studies. Progress in Geography, 2010, 29(1): 31-44. ] | |
[29] | 郭文伯, 张艳, 柴彦威. 城市居民出行的空气污染暴露测度及其影响机制: 北京市郊区社区的案例分析[J]. 地理研究, 2015, 34(7): 1310-1318. |
[ Guo Wenbo, Zhang Yan, Chai Yanwei. Measurement of residents' daily travel air pollution exposure and its mechanism: A case study of suburban communities in Beijing. Geographical Research, 2015, 34(7): 1310-1318. ] | |
[30] |
马静, 柴彦威, 符婷婷. 居民时空行为与环境污染暴露对健康影响的研究进展[J]. 地理科学进展, 2017, 36(10): 1260-1269.
doi: 10.18306/dlkxjz.2017.10.008 |
[ Ma Jing, Chai Yanwei, Fu Tingting. Progress of research on the health impact of people's space-time behavior and environmental pollution exposure. Progress in Geography, 2017, 36(10): 1260-1269. ]
doi: 10.18306/dlkxjz.2017.10.008 |
|
[31] |
赵宏波, 冯渊博, 董冠鹏, 等. 大城市居民自评健康与环境危害感知的空间差异及影响因素: 基于郑州市区的实证研究[J]. 地理科学进展, 2018, 37(12): 1713-1726.
doi: 10.18306/dlkxjz.2018.12.013 |
[ Zhao Hongbo, Feng Yuanbo, Dong Guanpeng, et al. Spatial differentiation and influencing factors of residents' self-rated health and environmental hazard perception: A case study of Zhengzhou City. Progress in Geography, 2018, 37(12): 1713-1726. ]
doi: 10.18306/dlkxjz.2018.12.013 |
|
[32] |
Wang S, Ren Z. Spatial variations and macroeconomic determinants of life expectancy and mortality rate in China: A county-level study based on spatial analysis models[J]. International Journal of Public Health, 2019, 64(5): 773-783.
doi: 10.1007/s00038-019-01251-y |
[33] |
程雁鹏, 冯永亮, 段小丽, 等. 孕期大气细颗粒物PM2.5暴露及对早产的影响研究[J]. 中华流行病学杂志, 2016, 37(4): 572-577.
pmid: 27087229 |
[ Cheng Yanpeng, Feng Yongliang, Duan Xiaoli, et al. Ambient PM2.5 during pregnancy and risk on preterm birth. Chinese Journal of Epidemiology, 2016, 37(4): 572-577. ]
doi: 10.3760/cma.j.issn.0254-6450.2016.04.027 pmid: 27087229 |
|
[34] |
Sun R, Gu D. Air pollution, economic development of communities, and health status among the elderly in urban China[J]. American Journal of Epidemiology, 2008, 168(11): 1311-1318.
doi: 10.1093/aje/kwn260 |
[35] | 刁贝娣, 丁镭, 成金华. 不同类型城市的PM2.5健康风险及影响因素差异[J]. 中国人口·资源与环境, 2021, 31(8): 90-100. |
[ Diao Beidi, Ding Lei, Cheng Jinhua. Differences of PM2.5 health risks and influencing factors in different types of cities. China Population, Resources and Environment, 2021, 31(8): 90-100. ] | |
[36] |
蔡瑞婷, 肖舜, 董治宝, 等. 汾渭平原典型城乡PM2.5中多环芳烃特征与健康风险[J]. 地理学报, 2021, 76(3): 740-752.
doi: 10.11821/dlxb202103017 |
[ Cai Ruiting, Xiao Shun, Dong Zhibao, et al. Characteristics and health risk of polycyclic aromatic hydrocarbons in PM2.5 in the typical urban and rural areas of the Fenwei Plain. Acta Geographica Sinica, 2021, 76(3): 740-752. ]
doi: 10.11821/dlxb202103017 |
|
[37] | 杨新兴, 冯丽华, 尉鹏. 大气颗粒物PM2.5及其危害[J]. 前沿科学, 2012, 6(1): 22-31. |
[ Yang Xinxing, Feng Lihua, Wei Peng. Air particulate matter PM2.5 in Beijing and its harm. Frontier Science, 2012, 6(1): 22-31. ] | |
[38] | 马静, 周创文, Pryce Gwilym. 环境公正视角下空气污染和死亡人数的空间分析及关系研究: 以河北省为例[J]. 人文地理, 2019, 34(6): 45-52, 98. |
[ Ma Jing, Zhou Chuangwen. Pryce Gwilym. Spatial analysis and modelling of air pollution and death rates in Hebei province, China. Human Geography, 2019, 34(6): 45-52, 98. ] | |
[39] | 祁毓, 卢洪友. 污染、健康与不平等: 跨越“环境健康贫困”陷阱[J]. 管理世界, 2015(9): 32-51. |
[ Qi Yu, Lu Hongyou. Pollution, health and inequality: Crossing the trap of 'environmental health poverty'. Management World, 2015(9): 32-51. ] | |
[40] |
Gong P, Liang S, Carlton E J, et al. Urbanisation and health in China[J]. The Lancet, 2012, 379: 843-852.
doi: 10.1016/S0140-6736(11)61878-3 |
[41] |
Geng G, Zheng Y, Zhang Q, et al. Drivers of PM2.5 air pollution deaths in China 2002-2017[J]. Nature Geoscience, 2021, 14(9): 645-650.
doi: 10.1038/s41561-021-00792-3 |
[42] | 涂正革, 张茂榆, 许章杰, 等. 收入增长、大气污染与公众健康: 基于CHNS的微观证据[J]. 中国人口·资源与环境, 2018, 28(6): 130-139. |
[ Tu Zhengge, Zhang Maoyu, Xu Zhangjie, et al. Income growth, air pollution and public health: Based on the evidence from CHNS. China Population, Resources and Environment, 2018, 28(6): 130-139. ] | |
[43] | 孙猛, 芦晓珊. 空气污染社会经济地位与居民健康不平等: 基于CGSS的微观证据[J]. 人口学刊, 2019, 41(6): 103-112. |
[ Sun Meng, Lu Xiaoshan. Air pollution, SES and residents' health inequality: Micro evidence based on CGSS. Population Journal, 2019, 41(6): 103-112. ] | |
[44] | 邵帅, 李欣, 曹建华, 等. 中国雾霾污染治理的经济政策选择: 基于空间溢出效应的视角[J]. 经济研究, 2016, 51(9): 73-88. |
[ Shao Shuai, Li Xin, Cao Jianhua, et al. China's economic policy choices for governing smog pollution based on spatial spillover effects. Economic Research Journal, 2016, 51(9): 73-88. ] | |
[45] | 李光勤, 何仁伟. PM2.5污染与健康支出: 时间滞后效应与空间溢出效应[J]. 安全与环境学报, 2019, 19(1): 326-336. |
[ Li Guangqin, He Renwei. PM2.5pollution and health spending: Temporal lag effects and spatial spillover effects. Journal of Safety and Environment, 2019, 19(1): 326-336. ] | |
[46] |
刘海猛, 方创琳, 黄解军, 等. 京津冀城市群大气污染的时空特征与影响因素解析[J]. 地理学报, 2018, 73(1): 177-191.
doi: 10.11821/dlxb201801015 |
[ Liu Haimeng, Fang Chuanglin, Huang Jiejun, et al. The spatial-temporal characteristics and influencing factors of air pollution in Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 2018, 73(1): 177-191. ]
doi: 10.11821/dlxb201801015 |
|
[47] | Center for International Earth Science Information Network-Ciesin-Columbia University. Annual PM2.5 concentrations for countries and urban areas, 1998—2016 [DB/OL]. 2021-04-06 [2021-10-20]. NASA Socioeconomic Data and Applications Center ( SEDAC), 2021. https://doi.org/10.7927/rja8-8h89. |
[48] | 徐新良. 中国人口空间分布公里网格数据集[DB/OL]. 中国科学院资源环境科学数据中心数据注册与出版系统, 2017 [2021-08-20]. https://www.resdc.cn/data.aspx?DATAID=251. doi: 10.12078/2017121101. |
[ Xu Xinliang. 1 km grid population spatial distribution dataset of China. Data Registration and Publishing System of the Resource and Environment Science and Data Center of Chinese Academy of Science, 2017 [2021-08-20]. https://www.resdc.cn/data.aspx?DATAID=251. doi: 10.12078/2017121101. ] | |
[49] | Didan K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006[DB/OL]. NASA EOSDIS Land Processes DAAC. 2015 [2021-08-20]. https://doi.org/10.5067/MODIS/MOD13Q1.006. |
[50] |
Anselin L. Local indicators of spatial association: LISA[J]. Geographical Analysis, 1995, 27(2): 93-115.
doi: 10.1111/j.1538-4632.1995.tb00338.x |
[51] |
Lesage J P, Fischer M M. Spatial growth regressions: Model specification, estimation and interpretation[J]. Spatial Economic Analysis, 2008, 3(3): 275-304.
doi: 10.1080/17421770802353758 |
[52] | 刘华军, 张权, 杨骞. 城镇化、空间溢出与区域经济增长: 基于空间回归模型偏微分方法及中国的实证[J]. 农业技术经济, 2014, 10: 95-105. |
[ Liu Huajun, Zhang Quan, Yang Qian. Urbanization, spatial spillover and regional economic growth based on partial differential method for spatial regression model and the empirical analysis of China. Journal of Agrotechnical Economics, 2014, 10: 95-105. ] | |
[53] | Robinson C, Schumacker R. Interaction effects: Centering, variance inflation factor, and interpretation issues[J]. Multiple Linear Regression Viewpoints, 2009, 35(1): 6-11. |
[54] |
Yang X Y, Geng L N, Zhou K X. The construction and examination of social vulnerability and its effects on PM2.5 globally: Combining spatial econometric modeling and geographically weighted regression[J]. Environmental Science and Pollution Research International, 2021, 28(21): 26732-26746.
doi: 10.1007/s11356-021-12508-6 |
[55] |
Liang Z, Wang W Z, Wang Y Y, et al. Urbanization, ambient air pollution, and prevalence of chronic kidney disease: A nationwide cross-sectional study[J]. Environment International, 2021, 156: 106752. doi: 10.1016/j.envint.2021.106752.
doi: 10.1016/j.envint.2021.106752 |
[56] | 姚宏文, 石琦, 李英华. 我国城乡居民健康素养现状及对策[J]. 人口研究, 2016, 40(2): 88-97. |
[ Yao Hongwen, Shi Qi, Li Yinghua. The current status of health literacy in China. Population Research, 2016, 40(2): 88-97. ] | |
[57] | 唐丹. 城乡因素在老年人抑郁症状影响模型中的调节效应[J]. 人口研究, 2010, 34(3): 53-63. |
[ Tang Dan. The mediating effect of urban and rural residence in the model of depression among Chinese elderly. Population Research, 2010, 34(3): 53-63. ] |
[1] | 龚勤林, 邹冬寒, 周沂, 朱晟君. 高级别景区对旅游发展的影响及其空间效应研究[J]. 地理科学进展, 2022, 41(8): 1364-1377. |
[2] | 孙平军. 城市收缩:内涵·中国化·研究框架[J]. 地理科学进展, 2022, 41(8): 1478-1491. |
[3] | 林柄全, 叶超. 艰难时世中的地理创造——张相文的地学生涯与学术贡献[J]. 地理科学进展, 2022, 41(8): 1542-1552. |
[4] | 李博, 曹盖. 基于涉海A股上市公司的中国沿海地区海洋经济网络结构韧性演化研究[J]. 地理科学进展, 2022, 41(6): 945-955. |
[5] | 蒋晟, 贺灿飞. 区域产业相关多样化和非相关多样化对中国出口市场多样化的影响[J]. 地理科学进展, 2022, 41(5): 770-784. |
[6] | 许艳, 张清源, 陆林. 潮汐性旅游流研究:概念框架与研究思路[J]. 地理科学进展, 2022, 41(3): 521-530. |
[7] | 孙斌栋, 王言言, 张志强, 李琬. 中国城市规模分布的形态和演化与城市增长模式——基于Zipf定律与Gibrat定律的分析[J]. 地理科学进展, 2022, 41(3): 361-370. |
[8] | 刘乐, 盛科荣, 张杰, 王传阳. 金融网络嵌入对中国城市创业活力的影响研究[J]. 地理科学进展, 2022, 41(12): 2244-2257. |
[9] | 于超月, 高阳, 王晨旭, 刘悦忻. 人地耦合视角下中国自然保护地有效性评估研究进展与展望[J]. 地理科学进展, 2022, 41(11): 2178-2190. |
[10] | 殷江滨, 张倩倩, 林赛南, 黄晓燕, 祁琪. 资本禀赋、城市环境对流动人口机会型创业的影响研究[J]. 地理科学进展, 2022, 41(10): 1833-1845. |
[11] | 刘鉴, 杨青山. 中国发展中国家地位的论证——基于190个经济体多维发展水平分类的实证分析[J]. 地理科学进展, 2022, 41(10): 1882-1898. |
[12] | 王丰龙. 行为地理学的学科特色与拓展路径[J]. 地理科学进展, 2022, 41(1): 16-26. |
[13] | 郭丽佳, 李畅, 彭红松, 钟士恩, 章锦河, 虞虎. 节能减排约束下中国省域旅游生态效率评估及空间格局研究[J]. 地理科学进展, 2021, 40(8): 1284-1297. |
[14] | 宋金彦, 李仙德, 徐宁. 中国新创通信设备制造企业空间格局及其影响因素研究[J]. 地理科学进展, 2021, 40(6): 911-924. |
[15] | 程雪兰, 方叶林, 苏雪晴, 李经龙. 中国东部沿海5大城市群旅游流网络结构空间分布特征研究[J]. 地理科学进展, 2021, 40(6): 948-957. |
|