地理科学进展 ›› 2022, Vol. 41 ›› Issue (4): 731-740.doi: 10.18306/dlkxjz.2022.04.016
• 研究综述 • 上一篇
叶翔宇1,2(), 李强1,3, 郭禹含1,2, 梁廖逢1,2, 王中根1,4,*(
)
收稿日期:
2021-08-09
修回日期:
2021-09-27
出版日期:
2022-04-28
发布日期:
2022-06-28
通讯作者:
*王中根(1973— ),男,河南潢川人,研究员,主要从事水文水资源研究。E-mail: wangzg@igsnrr.ac.cn作者简介:
叶翔宇(1996— ),男,浙江松阳人,博士生,研究方向为高性能水文模型、水文模型参数不确定性分析、山洪风险评估等。E-mail: yexy.18b@igsnrr.ac.cn
基金资助:
YE Xiangyu1,2(), LI Qiang1,3, GUO Yuhan1,2, LIANG Liaofeng1,2, WANG Zhonggen1,4,*(
)
Received:
2021-08-09
Revised:
2021-09-27
Online:
2022-04-28
Published:
2022-06-28
Supported by:
摘要:
传统分布式水文模型采用串行计算模式,其计算能力无法满足大规模水文精细化、多要素、多过程耦合模拟的需求,亟需并行计算的支持。进入21世纪后,计算机技术的飞速发展和并行环境的逐步完善,为分布式水文模型并行计算提供了软硬件支撑。论文从并行环境、并行算法2个方面对已有研究进行总结概括,分析了不同并行环境和并行算法的优势与不足,并提出提高模型并行效率的手段,即合理分配进程/线程数缩减通信开销,采用混合并行环境增强模型可扩展性,空间或时空离散化提高模型的可并行性及动态分配计算任务、平衡工作负载等。最后,论文对高性能并行分布式模型的未来研究方向进行展望。
叶翔宇, 李强, 郭禹含, 梁廖逢, 王中根. 高性能并行分布式水文模型研究进展[J]. 地理科学进展, 2022, 41(4): 731-740.
YE Xiangyu, LI Qiang, GUO Yuhan, LIANG Liaofeng, WANG Zhonggen. Progress of research on high-performance parallel distributed hydrological model[J]. PROGRESS IN GEOGRAPHY, 2022, 41(4): 731-740.
表1
分布式水文模型并行计算研究进展
并行算法 离散化方式 | 模型类型 | 文献来源 | 并行环境 | 模拟单元 | 单元数 | 最大加速比/进程(线程) |
---|---|---|---|---|---|---|
空间离散化 | 计算独立型 | Cui等, 2005[ | MPI | 网格 | 533 | 7/15进程 |
顺序依赖型 | Apostolopoulos 等, 1997[ | Encore | 子流域 | 9 | 1.5/9线程 | |
Xu 等, 2010[ | OpenMP | 子流域 | 288 | 2.42/4 线程 | ||
Vivoni 等, 2011[ | MPI | 子流域 | 5707 | 60~80/ 128~512 进程 | ||
Li 等, 2011[ | MPI | 子流域 | 4912 | 5.34/13 进程 | ||
Wang等, 2011[ | MPI | 子流域 | 501 | 7.8/10 进程 | ||
Liu 等, 2014[ | OpenMP | 子流域/栅格 | 115个子流域, 2381602个栅格 | 12.49/24线程 | ||
Liu 等, 2016[ | Hybrid | 子流域/栅格 | 67个子流域, 2381602个栅格 | 35/8进程 (48线程) | ||
Zhang 等, 2017[ | OpenMP | 子流域 | 97240 | 8.6/15线程 | ||
Zhu 等, 2019[ | Hybrid | 子流域/栅格 | 17个子流域,53900 个栅格 | 20/10进程 (40线程) | ||
秦泽宁等, 2020[ | OpenMP | 子流域 | 8485 | 2.3/4线程 | ||
向东, 2020[ | MPI/ OpenMP/CUDA | 子流域 | 8485 | MPI: 4.8/10进程 OpenMP: 7.8/10线程 CUDA: ≈3/256线程 | ||
紧密耦合型 | Kollet 等, 2006[ | MPI | 有限差分单元 | 5000000 | 82/100 进程 | |
苏丹阳, 2012[ | MPI | 子流域/栅格 | 110个子流域, 270816个栅格 | ≈4/4进程 | ||
Hwang 等, 2014[ | OpenMP | 有限元 | 25000 | 7.1/8进程 | ||
Le 等, 2015[ | CUDA | 有限元 | 3.5亿 | - | ||
Wu 等, 2021[ | MPI | 有限体积 | 10008005 | 地面径流: ≈64/64进程 地下径流: ≈512/512进程 | ||
时空离散化 | 顺序依赖型 | Wang等, 2013[ | MPI | 子流域 | 1869 | 15.04/24进程 |
秦泽宁等, 2020[ | OpenMP | 子流域 | 8485 | 8.17/20线程 |
[1] | 王中根, 刘昌明, 黄友波. SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003, 22(1): 79-86. |
[ Wang Zhonggen, Liu Changming, Huang Youbo. The theory of SWAT model and its application in Heihe Basin. Progress in Geography, 2003, 22(1): 79-86. ] | |
[2] | 王中根, 刘昌明, 吴险峰. 基于DEM的分布式水文模型研究综述[J]. 自然资源学报, 2003, 18(2): 168-173. |
[ Wang Zhonggen, Liu Changming, Wu Xianfeng. A review of the studies on distributed hydrological model based on DEM. Journal of Natural Resources, 2003, 18(2): 168-173. ] | |
[3] | 徐宗学, 程磊. 分布式水文模型研究与应用进展[J]. 水利学报, 2010, 41(9): 1009-1017. |
[ Xu Zongxue, Cheng Lei. Progress on studies and applications of the Distributed Hydrological Models. Journal of Hydraulic Engineering, 2010, 41(9): 1009-1017. ] | |
[4] |
Freeze R A, Harlan R L. Blueprint for a physically-based, digitally-simulated hydrologic response model[J]. Journal of Hydrology, 1969, 9(3): 237-258.
doi: 10.1016/0022-1694(69)90020-1 |
[5] |
Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment, Part 1: Model development[J]. Journal of the American Water Resources Association, 1998, 34(1): 73-89.
doi: 10.1111/j.1752-1688.1998.tb05961.x |
[6] |
Liang X, Lettenmaier D P, Wood E F, et al. A simple hydrologically based model of land-surface water and energy fluxes for General-Circulation Models[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D7): 14415-14428.
doi: 10.1029/94JD00483 |
[7] | 郭方, 刘新仁, 任立良. 以地形为基础的流域水文模型: TOPMODEL及其拓宽应用[J]. 水科学进展, 2000, 11(3): 296-301. |
[ Guo Fang, Liu Xinren, Ren Liliang. A topography based hydrological model: TOPMODEL and its widened application. Advances in Water Science, 2000, 11(3): 296-301. ] | |
[8] | 刘昌明, 王中根, 郑红星, 等. HIMS系统及其定制模型的开发与应用[J]. 中国科学(技术科学), 2008, 38(3): 350-360. |
[ Liu Changming, Wang Zhonggen, Zheng Hongxing, et al. Development and applications of HIMS modeling system. Scientia Sinica (Technologica), 2008, 38(3): 350-360. ] | |
[9] |
刘军志, 朱阿兴, 秦承志, 等. 分布式水文模型的并行计算研究进展[J]. 地理科学进展, 2013, 32(4): 538-547.
doi: 10.11820/dlkxjz.2013.04.006 |
[ Liu Junzhi, Zhu Axing, Qin Chengzhi, et al. Review on parallel computing of distributed hydrological models. Progress in Geography, 2013, 32(4): 538-547. ]
doi: 10.11820/dlkxjz.2013.04.006 |
|
[10] | 向东, 周祖昊, 袁胜, 等. 基于MPI的分布式水循环模型并行计算性能研究[J]. 水文, 2020, 40(5): 36-40, 27. |
[ Xiang Dong, Zhou Zuhao, Yuan Sheng, et al. Study on the parallel calculating performance of the distributed water cycle model based on MPI. Journal of China Hydrology, 2020, 40(5): 36-40, 27. ] | |
[11] |
Cui Z T, Vieux B E, Neeman H, et al. Parallelisation of a distributed hydrologic model[J]. International Journal of Computer Applications in Technology, 2005, 22(1): 42-52.
doi: 10.1504/IJCAT.2005.006802 |
[12] | 李铁键, 刘家宏, 和杨, 等. 集群计算在数字流域模型中的应用[J]. 水科学进展, 2006, 17(6): 841-846. |
[ Li Tie-jian, Liu Jiahong, He Yang, et al. Application of cluster computing in the digital watershed model. Advances in Water Science, 2006, 17(6): 841-846. ] | |
[13] | Li T J, Wang G Q, Chen J, et al. Dynamic parallelization of hydrological model simulations[J]. Environmental Modelling & Software, 2011, 26(12): 1736-1746. |
[14] |
Vivoni E R, Mascaro G, Mniszewski S, et al. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment[J]. Journal of Hydrology, 2011, 409(1/2): 483-496.
doi: 10.1016/j.jhydrol.2011.08.053 |
[15] |
Wang H, Fu X D, Wang G Q, et al. A common parallel computing framework for modeling hydrological processes of river basins[J]. Parallel Computing, 2011, 37(6/7): 302-315.
doi: 10.1016/j.parco.2011.05.003 |
[16] | 胡鹏辉. 面向栅格化分布式水文模拟的并行调度方法研究[D]. 南昌: 南昌大学, 2017. |
[ Hu Penghui. Research on parallel scheduling method for rasterized distributed hydrological simulation. Nanchang, China: Nanchang University, 2017. ] | |
[17] | 卢浩, 王少华, 李绍俊, 等. 基于OpenMP的并行化水文分析算法研究与实现[J]. 测绘与空间地理信息, 2013, 36(S1): 7-10. |
[ Lu Hao, Wang Shaohua, Li Shaojun, et al. Research and implementation of hydrologic analysis parallel algorithm based on OpenMP. Geomatics & Spatial Information Technology, 2013, 36(S1): 7-10. ] | |
[18] |
Xu R, Huang X X, Luo L, et al. A new grid-associated algorithm in the distributed hydrological model simulations[J]. Science in China Series E: Technological Sciences, 2010, 53(1): 235-241.
doi: 10.1007/s11431-009-0426-4 |
[19] | Liu J Z, Zhu A X, Liu Y B, et al. A layered approach to parallel computing for spatially distributed hydrological modeling[J]. Environmental Modelling & Software, 2014, 51: 221-227. |
[20] | 秦泽宁, 黎曙, 周祖昊, 等. 分布式水文模型区域分解并行计算方法及其应用[J]. 水电能源科学, 2020, 38(10): 1-4, 12. |
[ Qin Zening, Li Shu, Zhou Zuhao, et al. Domain decomposition parallel computing method of distributed hydrological model and its application. Water Resources and Power, 2020, 38(10): 1-4, 12. ] | |
[21] | 秦泽宁, 周祖昊, 刘明堂, 等. 分布式水文模型时空离散化并行计算方法研究[J]. 人民黄河, 2020, 42(8): 15-20. |
[ Qin Zening, Zhou Zuhao, Liu Mingtang, et al. Investigation on temporal-spatial discretization parallel computing method for distributed hydrological model. Yellow River, 2020, 42(8): 15-20. ] | |
[22] |
Wang H, Fu X D, Wang Y J, et al. A High-performance temporal-spatial discretization method for the parallel computing of river basins[J]. Computers & Geosciences, 2013, 58: 62-68.
doi: 10.1016/j.cageo.2013.04.026 |
[23] | Le P V V, Kumar P, Valocchi A J, et al. GPU-based high-performance computing for integrated surface-sub-surface flow modeling[J]. Environmental Modelling & Software, 2015, 73: 1-13. |
[24] | 张涛. 基于CUDA的水文模型并行算法研究[D]. 成都: 电子科技大学, 2015. |
[ Zhang Tao. The research of parallel algorithm based on CUDA for hydrological model. Chengdu, China: University of Electronic Science and Technology of China, 2015. ] | |
[25] | 刘永和, 冯锦明, 徐文鹏. 分布式水文模型的GPU并行化及快速模拟技术[J]. 水文, 2015, 35(4): 20-26. |
[ Liu Yonghe, Feng Jinming, Xu Wenpeng. GPU parallel computing and fast simulation of distributed hydrological models. Journal of China Hydrology, 2015, 35(4): 20-26. ] | |
[26] | Liu J Z, Zhu A X, Qin C Z, et al. A two-level parallelization method for distributed hydrological models[J]. Environmental Modelling & Software, 2016, 80: 175-184. |
[27] | Zhu L J, Liu J Z, Qin C Z, et al. A modular and parallelized watershed modeling framework[J]. Environmental Modelling & Software, 2019, 122: 104526. doi: 10.1016/j.envsoft.2019.104526. |
[28] |
Apostolopoulos T K, Georgakakos K P. Parallel computation for streamflow prediction with distributed hydrologic models[J]. Journal of Hydrology, 1997, 197: 1-24.
doi: 10.1016/S0022-1694(96)03281-7 |
[29] |
Zhang Y, Hou J L, Cao Y P, et al. OpenMP parallelization of a gridded SWAT (SWATG)[J]. Computers & Geosciences, 2017, 109: 228-237.
doi: 10.1016/j.cageo.2017.08.002 |
[30] | 向东. 基于WEP-L水循环模型的产流并行计算研究[D]. 郑州: 华北水利水电大学, 2020. |
[ Xiang Dong. Research on parallel computing of runoff generation based on WEP-L water cycle model. Zhengzhou, China: North China University of Water Resources and Electric Power, 2020. ] | |
[31] |
Kollet S J, Maxwell R M. Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model[J]. Advances in Water Resources, 2006, 29(7): 945-958.
doi: 10.1016/j.advwatres.2005.08.006 |
[32] | 苏丹阳. 基于物理概念的水文模型InHM机群并行计算研究[D]. 杭州: 浙江大学, 2012. |
[ Su Danyang. Study on the parallehization of a physics-based hydrologic model InHM utilizing computer cluster. Hangzhou, China: Zhejiang University, 2012. ] | |
[33] | Hwang H T, Park Y J, Sudicky E A, et al. A parallel computational framework to solve flow and transport in integrated surface-subsurface hydrologic systems[J]. Environmental Modelling & Software, 2014, 61: 39-58. |
[34] | Wu R J, Chen X Y, Hammond G, et al. Coupling surface flow with high-performance subsurface reactive flow and transport code PFLOTRAN[J]. Environmental Modelling & Software, 2021, 137: 104959. doi: 10.1016/j.envsoft.2021.104959. |
[35] |
Li T J, Wang G Q, Chen J. A modified binary tree codification of drainage networks to support complex hydrological models[J]. Computers & Geosciences, 2010, 36(11): 1427-1435.
doi: 10.1016/j.cageo.2010.04.009 |
[36] |
Liu J Z, Zhu A X, Qin C Z. Estimation of theoretical maximum speedup ratio for parallel computing of grid-based distributed hydrological models[J]. Computers & Geosciences, 2013, 60: 58-62.
doi: 10.1016/j.cageo.2013.04.030 |
[37] |
Wang H, Zhou Y, Fu X D, et al. Maximum speedup ratio curve (MSC) in parallel computing of the binary-tree-based drainage network[J]. Computers & Geosciences, 2012, 38(1): 127-135.
doi: 10.1016/j.cageo.2011.05.015 |
[38] | 秦泽宁. 基于WEP-L水文模型的汇流过程并行计算方法研究[D]. 郑州: 华北水利水电大学, 2020. |
[ Qin Zening. Research on parallel computing method of flow routing process based on WEP-L hydrological model[D]. Zhengzhou, China: North China University of Water Resources and Electric Power, 2020. ] | |
[39] | 朱吉生, 黄诗峰, 李纪人, 等. 水文模型尺度问题的若干探讨[J]. 人民黄河, 2015, 37(5): 31-37. |
[ Zhu Jisheng, Huang Shifeng, Li Jiren, et al. Some scale issues in hydrological modes. Yellow River, 2015, 37(5): 31-37. ] | |
[40] | 王纲胜, 夏军, 朱一中, 等. 基于非线性系统理论的分布式水文模型[J]. 水科学进展, 2004, 15(4): 521-525. |
[ Wang Gangsheng, Xia Jun, Zhu Yizhong, et al. Distributed hydrological modeling based on nonlinear system approach. Advances in Water Science, 2004, 15(4): 521-525. ] | |
[41] | 夏军, 王纲胜, 谈戈, 等. 水文非线性系统与分布式时变增益模型[J]. 中国科学(地球科学), 2004, 34(11): 1062-1071. |
[ Xia Jun, Wang Gangsheng, Tan Ge, et al. Hydrological nonlinear system and distributed time-varying gain model. Scientia Sinica (Terrae), 2004, 34(11): 1062-1071. ] | |
[42] |
朱阿兴, 朱良君, 史亚星, 等. 流域系统综合模拟与情景分析: 自然地理综合研究的新范式?[J]. 地理科学进展, 2019, 38(8): 1111-1122.
doi: 10.18306/dlkxjz.2019.08.001 |
[ Zhu Axing, Zhu Liangjun, Shi Yaxing, et al. Integrated watershed modeling and scenario analysis: A new paradigm for integrated study of physical geography? Progress in Geography, 2019, 38(8): 1111-1122. ]
doi: 10.18306/dlkxjz.2019.08.001 |
|
[43] | Guo Y H, Zhang Y Q, Zhang L, et al. Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review[J]. Wiley Interdisciplinary Reviews: Water, 2021, 8(1): e1487. doi: 10.1002/wat2.1487. |
[1] | 郭禹含, 王中根, 伍玉良. 多源再分析降水数据在拉萨河流域应用对比研究[J]. 地理科学进展, 2017, 36(8): 1033-1039. |
[2] | 王晓蕾, 孙林, 张宜清, 罗毅. 中亚阿姆河上游产流过程特征研究[J]. 地理科学进展, 2015, 34(3): 364-372. |
[3] | 江净超, 朱阿兴, 秦承志, 刘军志, 陈腊娇, 吴辉. 分布式水文模型软件系统研究综述[J]. 地理科学进展, 2014, 33(8): 1090-1100. |
[4] | 刘军志, 朱阿兴, 秦承志, 陈腊娇, 吴辉, 江净超. 分布式水文模型的并行计算研究进展[J]. 地理科学进展, 2013, 32(4): 538-547. |
[5] | 赵斯思, 周成虎. GPU加速的多边形叠加分析[J]. 地理科学进展, 2013, 32(1): 114-120. |
[6] | 王中根,朱新军,夏军,李建新. 海河流域分布式SWAT模型的构建[J]. 地理科学进展, 2008, 27(4): 1-6. |
[7] | 张奇. 湖泊集水域地表—地下径流联合模拟[J]. 地理科学进展, 2007, 26(5): 1-10. |
[8] | 池宸星,郝振纯, 王 玲, 胡健伟. 黄土区人类活动影响下的 产汇流模拟研究[J]. 地理科学进展, 2005, 24(3): 101-108. |
[9] | 刘昌明, 李道峰, 田英, 郝芳华, 杨桂莲. 基于DEM的分布式水文模型在大尺度流域应用研究[J]. 地理科学进展, 2003, 22(5): 437-445. |
[10] | 王中根, 刘昌明, 黄友波. SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003, 22(1): 79-86. |
[11] | 王中根, 刘昌明, 左其亭, 刘青娥. 基于DEM的分布式水文模型构建方法[J]. 地理科学进展, 2002, 21(5): 430-439. |
[12] | 万洪涛, 周成虎, 万庆. 流域水文模型计算域离散方法[J]. 地理科学进展, 2001, 20(4): 347-354. |
[13] | 王中根,朱新军夏军,李建新. 海河流域分布式SWAT 模型的构建[J]. 地理科学进展, 0, 0(): 1-6. |
|