地理科学进展 ›› 2022, Vol. 41 ›› Issue (4): 682-692.doi: 10.18306/dlkxjz.2022.04.012
刘凤山1,2,3(), 葛全胜3,4, 陶福禄3,4, 蔡杨星2, 卜建超2, 白妮妮1
收稿日期:
2021-02-23
修回日期:
2021-12-09
出版日期:
2022-04-28
发布日期:
2022-06-28
作者简介:
刘凤山(1986— ),男,山东潍坊,博士,助理研究员,主要研究领域为生态治理和农业气象学。E-mail: liufs.11b@igsnrr.ac.cn
基金资助:
LIU Fengshan1,2,3(), GE Quansheng3,4, TAO Fulu3,4, CAI Yangxing2, BU Jianchao2, BAI Nini1
Received:
2021-02-23
Revised:
2021-12-09
Online:
2022-04-28
Published:
2022-06-28
Supported by:
摘要:
通过改变陆—气界面的地表水热交换,农田管理变化是气候变化的重要反馈过程之一。华北平原玉米的播种期和有效积温发生了规律性变化,改变了叶面积指数(LAI)、地表反照率(α)、净辐射(Rn)、潜热(LH)和冠层温度(Tc)等,成为区域气候变化的重要反馈过程。论文利用SiBcrop模型模拟3种玉米情景(春玉米、夏玉米、潜在玉米)下的LAI、α、Rn、LH和Tc的季节动态。结果表明,春玉米具有早播种、早收获、早LAI峰值的特征;夏玉米具有晚播种、晚收获、晚LAI峰值的特征;潜在玉米具有早播种、晚收获、高LAI的特征。模拟情景之间LAI差异为±2.5 m2·m-2;Tc差异为±0.5 ℃。地表反照率(α)和地表能量分配是决定情景之间Tc差异的决定因素,播种期推迟,以α升高的降温效应为主;有效积温增加,以LH分配增多的降温效应为主。春玉米具有最高的冠层温度,夏玉米和潜在玉米的冠层温度较低且差异很小。研究结果对于促进农田土地管理变化适应和缓解区域气候变化具有一定意义。
刘凤山, 葛全胜, 陶福禄, 蔡杨星, 卜建超, 白妮妮. 华北平原玉米播种期和品种变化对冠层温度的影响及地表生物物理机理[J]. 地理科学进展, 2022, 41(4): 682-692.
LIU Fengshan, GE Quansheng, TAO Fulu, CAI Yangxing, BU Jianchao, BAI Nini. Impacts of maize planting date and variety on canopy temperature on the North China Plain and surface biophysical mechanism[J]. PROGRESS IN GEOGRAPHY, 2022, 41(4): 682-692.
表1
所选站点的基本气象和物候信息
站点 | 品种 | 观测时期 | 气温/℃ | 降水/mm | 播种期(DOY) | 收获期(DOY) | GDD/(℃·d) |
---|---|---|---|---|---|---|---|
宝坻 | 春玉米 | 1982—1997 | 23.6 | 514.3 | 133.6 | 259.8 | 2952.5 |
夏玉米 | 1998—2009 | 24.2 | 340.7 | 166.6 | 272.8 | 2542.8 | |
黄骅 | 夏玉米 | 1981—2009(1997) | 25.4 | 340.6 | 170.0 | 259.2 | 2170.6 |
密云 | 春玉米 | 1981—1998(1988) | 23.3 | 560.6 | 147.0 | 247.3 | 2844.2 |
夏玉米 | 1999—2009 | 24.2 | 362.5 | 174.6 | 269.1 | 2253.6 | |
南阳 | 夏玉米 | 1981—2009 | 25.8 | 409.9 | 160.0 | 259.0 | 2520.8 |
商丘 | 夏玉米 | 1981—2009 | 25.6 | 408.2 | 161.1 | 258.2 | 2455.6 |
唐山 | 春玉米 | 1981—1993(1986/1987/1989) | 24.1 | 520.8 | 123.2 | 239.9 | 2670.8 |
夏玉米 | 1994—2009 | 23.1 | 374.7 | 174.4 | 277.4 | 2455.1 | |
潍坊 | 春玉米 | 1984—2005 | 24.6 | 393.3 | 145.5 | 254.1 | 2644.4 |
夏玉米 | 1986、1996、2006—2009 | 24.7 | 377.3 | 160.7 | 260.0 | 2422.6 | |
新乡 | 夏玉米 | 1981—2009 | 25.9 | 341.2 | 158.7 | 257.1 | 2519.7 |
郑州 | 夏玉米 | 1981—2009(1992) | 26.0 | 354.6 | 158.2 | 254.1 | 2464.3 |
驻马店 | 夏玉米 | 1990—2009 | 26.0 | 532.1 | 160.7 | 258.4 | 2505.1 |
表3
不同情景下物候期的分布
站点 | 春玉米(DOY) | 夏玉米(DOY) | 潜在玉米(DOY) | |||||
---|---|---|---|---|---|---|---|---|
播种期 | 收获期 | 播种期 | 收获期 | 播种期 | 收获期 | |||
宝坻 | 144 | 268 | 169 | 280 | 144 | 318 | ||
黄骅 | 144 | 265 | 170 | 280 | 144 | 315 | ||
密云 | 145 | 271 | 169 | 280 | 145 | 321 | ||
南阳 | 144 | 260 | 170 | 280 | 144 | 304 | ||
商丘 | 144 | 259 | 170 | 280 | 144 | 306 | ||
唐山 | 145 | 269 | 169 | 280 | 145 | 319 | ||
潍坊 | 145 | 267 | 170 | 280 | 145 | 317 | ||
新乡 | 144 | 256 | 169 | 280 | 144 | 305 | ||
郑州 | 144 | 261 | 170 | 280 | 144 | 311 | ||
驻马店 | 144 | 262 | 170 | 280 | 144 | 310 |
表5
不同情景之间各参数在不同时期的平均差异
情景差异 | 参数 | 时期1 | 时期2 | 时期3 | 时期4 | 时期5 | 总体 |
---|---|---|---|---|---|---|---|
春-夏 | LAI/(m2·m-2) | 0.05 | 1.18 | -1.27 | -2.91 | 0.00 | -0.59 |
Tc/℃ | 0.49 | -0.36 | 0.18 | 0.35 | 0.01 | 0.13 | |
Rn/(W·m-2) | 15.54 | 6.94 | -5.56 | -23.90 | -0.07 | -1.41 | |
LH/(W·m-2) | 6.07 | 9.10 | -4.88 | -13.22 | 0.41 | -0.50 | |
SH/(W·m-2) | 7.76 | -0.48 | -1.78 | -11.40 | -0.17 | -1.21 | |
潜-春 | LAI/(m2·m-2) | 0.06 | 0.98 | 1.74 | 2.43 | 1.47 | 1.34 |
Tc/℃ | -0.06 | -0.17 | -0.27 | -0.21 | 0.09 | -0.12 | |
Rn/(W·m-2) | 1.21 | 2.44 | 6.32 | 22.77 | 14.00 | 9.35 | |
LH/(W·m-2) | 1.27 | 3.10 | 4.83 | 11.16 | 3.75 | 4.82 | |
SH/(W·m-2) | 0.23 | -0.11 | 2.12 | 11.28 | 9.49 | 4.60 | |
潜-夏 | LAI/(m2·m-2) | 0.11 | 2.16 | 0.46 | -0.48 | 1.47 | 0.74 |
Tc/℃ | 0.43 | -0.53 | -0.09 | 0.14 | 0.11 | 0.01 | |
Rn/(W·m-2) | 16.75 | 9.38 | 0.76 | -1.13 | 13.93 | 7.94 | |
LH/(W·m-2) | 7.35 | 12.20 | -0.06 | -2.06 | 4.17 | 4.32 | |
SH/(W·m-2) | 7.99 | -0.58 | 0.34 | -0.12 | 9.32 | 3.39 |
[1] |
Mahmood R, Pielke Sr R A, Hubbard K G, et al. Land cover changes and their biogeophysical effects on climate[J]. International Journal of Climatology, 2014, 34(4): 929-953.
doi: 10.1002/joc.3736 |
[2] |
Erb K-H, Luyssaert S, Meyfroidt P, et al. Land management: Data availability and process understanding for global change studies[J]. Global Change Biology, 2017, 23(2): 512-533.
doi: 10.1111/gcb.13443 |
[3] |
Luyssaert S, Jammet M, Stoy P C, et al. Land management and land-cover change have impacts of similar magnitude on surface temperature[J]. Nature Climate Change, 2014, 4(5): 389-393.
doi: 10.1038/nclimate2196 |
[4] |
Davin E L, Seneviratne S I, Ciais P, et al. Preferential cooling of hot extremes from cropland albedo management[J]. PNAS, 2014, 111(27): 9757-9761.
doi: 10.1073/pnas.1317323111 |
[5] | 刘巽浩, 韩湘玲, 赵明斋, 等. 华北平原地区麦田两熟的光能利用、作物竞争与产量分析[J]. 作物学报, 1981, 7(1): 63-72. |
[ Liu Xunhao, Han Xiangling, Zhao Mingzhai, et al. Studies on solar energy utilization, crop competition and yield analysis in double cropped wheat fields in the North China Plain. Acta Agronomica Sinica, 1981, 7(1): 63-72. ] | |
[6] |
Tao F L, Zhang S, Zhang Z, et al. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift[J]. Global Change Biology, 2014, 20(12): 3686-3699.
doi: 10.1111/gcb.12684 |
[7] |
Tao F L, Zhang S, Zhang Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics[J]. European Journal of Agronomy, 2012, 43: 201-212.
doi: 10.1016/j.eja.2012.07.005 |
[8] |
Sacks W J, Kucharik C J. Crop management and phenology trends in the US Corn Belt: Impacts on yields, evapotranspiration and energy balance[J]. Agricultural and Forest Meteorology, 2011, 151(7): 882-894.
doi: 10.1016/j.agrformet.2011.02.010 |
[9] |
刘凤山, 陈莹, 史文娇, 等. 农业物候动态对地表生物物理过程及气候的反馈研究进展[J]. 地理学报, 2017, 72(7): 1139-1150.
doi: 10.11821/dlxb201707001 |
[ Liu Fengshan, Chen Ying, Shi Wenjiao, et al. Influences of agricultural phenology dynamics on land surface biophysical processes and climate feedback: A review. Acta Geographica Sinica, 2017, 72(7): 1139-1150. ]
doi: 10.11821/dlxb201707001 |
|
[10] |
Zhang X Z, Tang Q H, Zheng J Y, et al. Warming/cooling effects of cropland greenness changes during 1982-2006 in the North China Plain[J]. Environmental Research Letters, 2013, 8(2): 024038. doi: 10.1088/1748-9326/8/2/024038.
doi: 10.1088/1748-9326/8/2/024038 |
[11] |
Ho C-H, Park S-J, Jeong S-J, et al. Observational evidences of double cropping impacts on the climate in the Northern China Plains[J]. Journal of Climate, 2012, 25(13): 4721-4728.
doi: 10.1175/JCLI-D-11-00224.1 |
[12] | Bagley J E, Miller J, Bernacchi C J. Biophysical impacts of climate-smart agriculture in the Midwest United States[J]. Plant, Cell & Environment, 2015, 38(9): 1913-1930. |
[13] |
Oguntunde P G, van de Giesen N. Crop growth and development effects on surface albedo for maize and cowpea fields in Ghana, West Africa[J]. International Journal of Biometeorology, 2004, 49(2): 106-112.
pmid: 15278686 |
[14] |
Jeong S-J, Ho C-H, Piao S L, et al. Effects of double cropping on summer climate of the North China Plain and neighbouring regions[J]. Nature Climate Change, 2014, 4(7): 615-619.
doi: 10.1038/nclimate2266 |
[15] | 张雅芳, 郭英, 沈彦俊, 等. 华北平原种植结构变化对农业需水的影响[J]. 中国生态农业学报(中英文), 2020, 28(1): 8-16. |
[ Zhang Yafang, Guo Ying, Shen Yanjun, et al. Impact of planting structure changes on agricultural water requirement in North China Plain. Chinese Journal of Eco-Agriculture, 2020, 28(1): 8-16. ] | |
[16] | 周广胜. 气候变化对中国农业生产影响研究展望[J]. 气象与环境科学, 2015, 38(1): 80-94. |
[ Zhou Guang-sheng. Research prospect on impact of climate change on agricultural production in China. Meteorological and Environmental Sciences, 2015, 38(1): 80-94. ] | |
[17] |
周美君, 李飞, 邵佳琪, 等. 气候变化背景下中国玉米生产潜力变化特征[J]. 地理科学进展, 2020, 39(3): 443-453.
doi: 10.18306/dlkxjz.2020.03.009 |
[ Zhou Meijun, Li Fei, Shao Jiaqi, et al. Change characteristics of maize production potential under the background of climate change in China. Progress in Geography, 2020, 39(3): 443-453. ]
doi: 10.18306/dlkxjz.2020.03.009 |
|
[18] |
Liu F S, Chen Y, Bai N N, et al. Divergent climate feedbacks on winter wheat growing and dormancy periods as affected by sowing date in the North China Plain[J]. Biogeosciences, 2021, 18(7): 2275-2287.
doi: 10.5194/bg-18-2275-2021 |
[19] |
阿多, 熊凯, 赵文吉, 等. 1960-2013年华北平原气候变化时空特征及其对太阳活动和大气环境变化的响应[J]. 地理科学, 2016, 36(10): 1555-1564.
doi: 10.13249/j.cnki.sgs.2016.10.013 |
[ A Duo, Xiong Kai, Zhao Wenji, et al. Temporal trend of climate change and mutation analysis of North China Plain during 1960 to 2013. Scientia Geographica Sinica, 2016, 36(10): 1555-1564. ]
doi: 10.13249/j.cnki.sgs.2016.10.013 |
|
[20] | 史培军, 孙劭, 汪明, 等. 中国气候变化区划(1961-2010年)[J]. 中国科学: 地球科学, 2014, 44(10): 2294-2306. |
[ Shi Peijun, Sun Shao, Wang Ming, et al. Climate change regionalization in China (1961-2010). Scientia Sinica Terrae, 2014, 44(10): 2294-2306. ]
doi: 10.1360/zd-2014-44-10-2294 |
|
[21] |
Lokupitiya E, Denning S, Paustian K, et al. Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands[J]. Biogeosciences, 2009, 6(6): 969-986.
doi: 10.5194/bg-6-969-2009 |
[22] |
Liu F S, Chen Y, Xiao D P, et al. Modeling crop growth and land surface energy fluxes in wheat-maize double cropping system in the North China Plain[J]. Theoretical and Applied Climatology, 2020, 142: 959-970.
doi: 10.1007/s00704-020-03353-7 |
[23] |
Chen Y, Liu F S, Tao F L, et al. Calibration and validation of SiBcrop Model for simulating LAI and surface heat fluxes of winter wheat in the North China Plain[J]. Journal of Integrative Agriculture, 2020, 19(9): 2206-2215.
doi: 10.1016/S2095-3119(20)63178-1 |
[24] |
Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.
doi: 10.1007/BF00386231 pmid: 24306196 |
[25] |
Collatz G J, Berry J A, Farquhar G D, et al. The relationship between the Rubisco reaction mechanism and models of photosynthesis[J]. Plant Cell and Environment, 1990, 13(3): 219-225.
doi: 10.1111/j.1365-3040.1990.tb01306.x |
[26] |
Song Y, Jain A K, McIsaac G F. Implementation of dynamic crop growth processes into a land surface model: Evaluation of energy, water and carbon fluxes under corn and soybean rotation[J]. Biogeosciences, 2013, 10(12): 8039-8066.
doi: 10.5194/bg-10-8039-2013 |
[27] | Mo X G, Liu S X, Lin Z H. Evaluation of an ecosystem model for a wheat-maize double cropping system over the North China Plain[J]. Environmental Modelling & Software, 2012, 32: 61-73. |
[28] | Boisier J P, Pitman A J, et al. Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D12116. doi: 10.1029/2011JD017106. |
[29] | 农业百科. 春玉米播种时间是什么时候, 如何确定播种日期[EB/OL]. 2020-11-11 [2021-01-23]. http://www.nongyie.com/zliangshiym/2020/49633.html . |
[ Agricultural encyclopedia. When is the sowing time of spring maize and how to determine the sowing date. 2020-11-11 [2021-01-23]. http://www.nongyie.com/zliangshiym/2020/49633.html . ] | |
[30] |
Ge Q S, Zhang X Z, Zheng J Y. Simulated effects of vegetation increase/decrease on temperature changes from 1982 to 2000 across the Eastern China[J]. International Journal of Climatology, 2014, 34(1): 187-196.
doi: 10.1002/joc.3677 |
[31] |
O'Brien P L, Daigh A L M. Tillage practices alter the surface energy balance: A review[J]. Soil and Tillage Research, 2019, 195: 104354. doi: 10.1016/j.still.2019.104354.
doi: 10.1016/j.still.2019.104354 |
[32] | 牛萌萌, 方会敏, 荐世春, 等. 黄淮海东部小麦玉米周年全程机械化生产现状[J]. 农业工程, 2020, 10(10): 1-7. |
[ Niu Mengmeng, Fang Huimin, Jian Shichun, et al. Present situation of annual whole process mechanization of wheat and maize in east of Huanghuaihai Plain. Agricultural Engineering, 2020, 10(10): 1-7. ] | |
[33] | 韩鲁佳, 闫巧娟, 刘向阳, 等. 中国农作物秸秆资源及其利用现状[J]. 农业工程学报, 2002, 18(3): 87-91. |
[ Han Lujia, Yan Qiaojuan, Liu Xiangyang, et al. Straw resources and their util ization in China. Transactions of the CSAE, 2002, 18(3): 87-91. ] | |
[34] | Liu Z J, Wu C Y, Liu Y S, et al. Spring green-up date derived from GIMMS3g and SPOT-VGT NDVI of winter wheat cropland in the North China Plain[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2017, 130: 81-91. |
[35] |
Xiao D P, Tao F L, Liu Y J, et al. Observed changes in winter wheat phenology in the North China Plain for 1981-2009 [J]. International Journal of Biometeorology, 2013, 57(2): 275-285.
doi: 10.1007/s00484-012-0552-8 |
[36] |
Bohm K, Ingwersen J, Milovac J, et al. Distinguishing between early- and late-covering crops in the land surface model Noah-MP: Impact on simulated surface energy fluxes and temperature[J]. Biogeosciences, 2020, 17(10): 2791-2805.
doi: 10.5194/bg-17-2791-2020 |
[1] | 王菲, 陈报章, 陈婧, 张慧芳, 郭立峰. 华北平原冬小麦—夏玉米轮作区DLM与CLM5模型模拟对比研究[J]. 地理科学进展, 2022, 41(2): 289-303. |
[2] | 周美君, 李飞, 邵佳琪, 杨海娟. 气候变化背景下中国玉米生产潜力变化特征[J]. 地理科学进展, 2020, 39(3): 443-453. |
[3] | 袁瑞强, 龙西亭, 王鹏, 王仕琴, 宋献方. 白洋淀流域地下水更新速率[J]. 地理科学进展, 2015, 34(3): 381-388. |
[4] | 杨旺明, 蒋冲, 喻小勇, 崔雪锋. 气候变化背景下人为热估算和效应研究[J]. 地理科学进展, 2014, 33(8): 1029-1038. |
[5] | 刘凤山, 陶福禄, 肖登攀, 张帅, 王猛, 张贺. 土地利用类型转换对地表能量平衡和气候的影响——基于SiB2模型的模拟结果[J]. 地理科学进展, 2014, 33(6): 815-824. |
[6] | 韩荣青, 潘韬, 刘玉洁, 张九天, 王文涛. 华北平原农业适应气候变化技术集成创新体系[J]. 地理科学进展, 2012, 31(11): 1537-1545. |
[7] | 毛任钊, 刘小京, 娄华君. 华北平原缺水盐渍区浅层地下水位动态分析[J]. 地理科学进展, 2002, 21(6): 561-572. |
[8] | 张喜英, 陈素英, 裴冬, 刘孟雨. 秸秆覆盖下的夏玉米蒸散、水分利用效率和作物系数的变化[J]. 地理科学进展, 2002, 21(6): 583-592. |
[9] | 何书金, 姜德华. 华北平原粮棉生产发展变化与市场机制转换[J]. 地理科学进展, 1997, 16(2): 55-61. |
|