[1] |
WMO. State of global climate 2020(WMO-No.1264)[EB/OL]. World Meteorological Organization, 2021 [2021-04-13]. https://library.wmo.int/index.php?lvl=notice_display&id=21880#.Yhg1jLCwH9c.
|
[2] |
Miller-Rushing A J, Primack R B. Global warming and flowering times in thoreau's concord: A community perspective[J]. Ecology, 2008,89(2):332-341.
|
[3] |
Linkosalo T, Häkkinen R, Terhivuo J, et al. The time series of flowering and leaf bud burst of boreal trees(1846-2005) support the direct temperature observations of climatic warming[J]. Agricultural and Forest Meteorology, 2009,149(3/4):453-461.
|
[4] |
Ge Q S, Wang H J, Rutishauser T, et al. Phenological response to climate change in China: A meta-analysis[J]. Global Change Biology, 2015,21(1):265-274.
|
[5] |
Delpierre N, Dufrêne E, Soudani K, et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France[J]. Agricultural and Forest Meteorology, 2009,149(6/7):938-948.
|
[6] |
Vitasse Y, François C, Delpierre N, et al. Assessing the effects of climate change on the phenology of European temperate trees[J]. Agricultural and Forest Meteorology, 2011,151(7):969-980.
|
[7] |
Gill A L, Gallinat A S, Sanders-DeMott R, et al. Changes in autumn senescence in northern hemisphere deciduous trees: A meta-analysis of autumn phenology studies[J]. Annals of Botany, 2015,116(6):875-888.
|
[8] |
Menzel A, Yuan Y, Matiu M, et al. Climate change fingerprints in recent European plant phenology[J]. Global Change Biology, 2020,26(4):2599-2612.
|
[9] |
Chmielewski F M, Rötzer T. Response of tree phenology to climate change across Europe[J]. Agricultural and Forest Meteorology, 2001,108(2):101-112.
|
[10] |
Peñuelas J, Filella I. Responses to a warming world[J]. Science, 2001,294:793-795.
|
[11] |
Menzel A, Sparks T H, Estrella N, et al. European phenological response to climate change matches the warming pattern[J]. Global Change Biology, 2006,12(10):1969-1976.
|
[12] |
Richardson A D, Keenan T F, Migliavacca M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology, 2013,169:156-173.
|
[13] |
Keenan T F, Gray J, Friedl M A, et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology[J]. Nature Climate Change, 2014,4(7):598-604.
|
[14] |
董晓宇, 姚华荣, 戴君虎, 等. 2000—2017年内蒙古荒漠草原植被物候变化及对净初级生产力的影响[J]. 地理科学进展, 2020,39(1):24-35.
|
|
[ Dong Xiaoyu, Yao Huarong, Dai Junhu, et al. Phenological changes of desert steppe vegetation and its effect on net primary productivity in Inner Mongolia from 2000 to 2017. Progress in Geography, 2020,39(1):24-35. ]
|
[15] |
Thackeray S J, Henrys P A, Hemming D, et al. Phenological sensitivity to climate across taxa and trophic levels[J]. Nature, 2016,535:241-245.
|
[16] |
黄文婕, 葛全胜, 戴君虎, 等. 贵阳木本植物始花期对温度变化的敏感度[J]. 地理科学进展, 2017,36(8):1015-1024.
|
|
[ Huang Wenjie, Ge Quansheng, Dai Junhu, et al. Sensitivity of first flowering dates to temperature change for typical woody plants in Guiyang City, China. Progress in Geography, 2017,36(8):1015-1024. ]
|
[17] |
Memmott J, Craze P G, Waser N M, et al. Global warming and the disruption of plant-pollinator interactions[J]. Ecology Letters, 2007,10(8):710-717.
|
[18] |
Burgess M D, Smith K W, Evans K L, et al. Tritrophic phenological match-mismatch in space and time[J]. Nature Ecology & Evolution, 2018,2(6):970-975.
|
[19] |
Duchenne F, Thébault E, Michez D, et al. Phenological shifts alter the seasonal structure of pollinator assemblages in Europe[J]. Nature Ecology & Evolution, 2020,4(1):115-121.
|
[20] |
Schwartz M D, Ahas R, Aasa A. Onset of spring starting earlier across the Northern Hemisphere[J]. Global Change Biology, 2006,12(2):343-351.
|
[21] |
Høye T T, Post E, Schmidt N M, et al. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic[J]. Nature Climate Change, 2013,3(8):759-763.
|
[22] |
Fu Y H, Campioli M, Deckmyn G, et al. Sensitivity of leaf unfolding to experimental warming in three temperate tree species[J]. Agricultural and Forest Meteorology, 2013,181:125-132.
|
[23] |
Rollinson C R, Kaye M W. Experimental warming alters spring phenology of certain plant functional groups in an early successional forest community[J]. Global Change Biology, 2012,18(3):1108-1116.
|
[24] |
Basler D, Körner C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species[J]. Agricultural and Forest Meteorology, 2012,165:73-81.
|
[25] |
Flynn D F B, Wolkovich E M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community[J]. New Phytologist, 2018,219(4):1353-1362.
|
[26] |
Du Y J, Pan Y Q, Ma K P. Moderate chilling requirement controls budburst for subtropical species in China[J]. Agricultural and Forest Meteorology, 2019,278:107693. doi: 10.1016/j.agrformet.2019.107693.
|
[27] |
Körner C, Basler D. Phenology under global warming[J]. Science, 2010,327:1461-1462.
|
[28] |
Vitasse Y, Basler D. Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments?[J]. Tree Physiology, 2014,34(2):174-183.
|
[29] |
Murray M B, Cannell M G R, Smith R I. Date of budburst of fifteen tree species in Britain following climatic warming[J]. Journal of Applied Ecology, 1989,26(2):693-700.
|
[30] |
Laube J, Sparks T H, Estrella N, et al. Chilling outweighs photoperiod in preventing precocious spring development[J]. Global Change Biology, 2014,20(1):170-182.
|
[31] |
Bock A, Sparks T H, Estrella N, et al. Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey[J]. Global Change Biology, 2014,20(11):3508-3519.
|
[32] |
Ettinger A K, Chamberlain C J, Morales-Castilla I, et al. Winter temperatures predominate in spring phenological responses to warming[J]. Nature Climate Change, 2020,10(12):1137-1142.
|
[33] |
McElreath R. Statistical rethinking: A Bayesian course with examples in Rand Stan,[M]. 2nd Edition. New York, USA: CRC Press, 2020.
|
[34] |
Gelman A, Carlin J B, Stern H S, et al. Bayesian data analysis [M]. 3rd Edition. New York, USA: CRC Press, 2014.
|
[35] |
Carpenter B, Gelman A, Hoffman M D, et al. Stan: A probabilistic programming language[J]. Journal of Statistical Software, 2017,76(1):1-32.
|
[36] |
徐韵佳, 葛全胜, 戴君虎, 等. 近50年中国典型木本植物展叶始期温度敏感度变化及原因[J]. 生态学报, 2019,39(21):8135-8143.
|
|
[ Xu Yunjia, Ge Quansheng, Dai Junhu, et al. Variations in temperature sensitivity of leaf unfolding date and their influencing factors for typical woody plants in China over the past 50 years. Acta Ecologica Sinica, 2019,39(21):8135-8143. ]
|
[37] |
陶泽兴, 葛全胜, 徐韵佳, 等. 西安和宝鸡木本植物花期物候变化及温度敏感度对比[J]. 生态学报, 2020,40(11):3666-3676.
|
|
[ Tao Zexing, Ge Quansheng, Xu Yunjia, et al. Comparison of changes in flowering phenology of woody plants and temperature sensitivity between Xi'an and Baoji. Acta Ecologica Sinica, 2020,40(11):3666-3676. ]
|
[38] |
Wang H, Tao Z X, Wang H J, et al. Varying temperature sensitivity of bud-burst date at different temperature conditions[J]. International Journal of Biometeorology, 2021,65(3):357-367.
|
[39] |
Fu Y H, Zhao H F, Piao S L, et al. Declining global warming effects on the phenology of spring leaf unfolding[J]. Nature, 2015,526:104-107.
|
[40] |
Stavang J A, Gallego-Bartolomé J, Gómez M D, et al. Hormonal regulation of temperature induced growth in Arabidopsis[J]. The Plant Journal, 2009,60(4):589-601.
|
[41] |
Feng S H, Martinez C, Gusmaroli G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008,451:475-479.
|
[42] |
de Lucas M, Davière J M, Rodríguez-Falcón M, et al. A molecular framework for light and gibberellin control of cell elongation[J]. Nature, 2008,451:480-484.
|
[43] |
Wang H J, Wu C Y, Ciais P, et al. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling[J]. Nature Communications, 2020,11:4945. doi: 10.1038/s41467-020-18743-8.
|
[44] |
王焕炯, 陶泽兴, 葛全胜. 气候波动对西安39种木本植物展叶始期及其积温需求的影响[J]. 植物生态学报, 2019,43(10):877-888.
|
|
[ Wang Huanjiong, Tao Zexing, Ge Quansheng. Effects of climate variation on the first leaf dates of 39 woody species and their thermal requirements in Xi'an, China. Chinese Journal of Plant Ecology, 2019,43(10):877-888. ]
|
[45] |
陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020,75(7):1451-1464.
|
|
[ Tao Zexing, Ge Quansheng, Wang Huanjiong. Spatio-temporal variations in the thermal requirement of the first flowering dates of Salix babylonica and Ulmus pumila in China during 1963-2018. Acta Geographica Sinica, 2020,75(7):1451-1464. ]
|
[46] |
Singh R K, Maurya J P, Azeez A, et al. A genetic network mediating the control of bud break in hybrid aspen[J]. Nature Communications, 2018,9:4173. doi: 10.1038/s41467-018-06696-y.
|