地理科学进展 ›› 2022, Vol. 41 ›› Issue (3): 437-450.doi: 10.18306/dlkxjz.2022.03.007
孔玲玲1,2,3(), 冯险峰1,2,*(
), 武爽1,2, 刘子川1,2, 姚玄楚1
收稿日期:
2021-02-25
修回日期:
2021-06-02
出版日期:
2022-03-28
发布日期:
2022-05-28
通讯作者:
*冯险峰(1970— ),女,河南新乡人,博士,副研究员,主要从事生态环境遥感应用与制图研究。E-mail: fengxf@lreis.ac.cn作者简介:
孔玲玲(1994— ),女,甘肃永靖人,硕士生,主要从事遥感地学分析研究。E-mail: kll_linxi1009@163.com
基金资助:
KONG Lingling1,2,3(), FENG Xianfeng1,2,*(
), WU Shuang1,2, LIU Zichuan1,2, YAO Xuanchu1
Received:
2021-02-25
Revised:
2021-06-02
Online:
2022-03-28
Published:
2022-05-28
Supported by:
摘要:
拉萨城市圈是西藏自治区生态环境与城镇化作用突出的区域,近年来已经出现草场退化、土壤沙化等生态环境问题,对该区域生态质量状况的监测迫在眉睫,但目前又缺少对该区域精细尺度的生态质量状况研究。鉴于此,论文利用Google Earth Engine遥感大数据平台的并行计算优势,基于Landsat TM/ETM+卫星影像,通过遥感生态指数(remote sensing ecological index,RSEI)方法监测了拉萨城市圈1994—2017年生态质量的时空变化,深入分析了生态质量变化的气候驱动因子和土地利用转移因子,探索了气候综合驱动的时空分布特征及其变化。结果表明:① 在1994—2017年期间,拉萨城市圈的生态质量良好,在空间上呈现自西南向东北逐渐降低趋势,生态质量整体有改善趋势,改善比重为45.98%;② 热度是RSEI的内部主控因素,对RSEI产生负向影响,体现了气候变暖对研究区生态质量的抑制作用;③ 蒸汽压亏缺、气候水分亏缺是生态质量变化的主要气候驱动因子,草地向其他用地的转移是主要的土地利用驱动因子;④ 气候综合驱动在研究期间整体有减弱趋势,分布格局自西南向东北逐渐增强。论文对拉萨城市圈生态质量状况的监测及其驱动力的深入研究,能够为高原生态环境的保护和西藏地区城镇化的健康发展提供科学指引。
孔玲玲, 冯险峰, 武爽, 刘子川, 姚玄楚. 拉萨城市圈1994—2017年生态质量的时空动态监测及驱动力分析[J]. 地理科学进展, 2022, 41(3): 437-450.
KONG Lingling, FENG Xianfeng, WU Shuang, LIU Zichuan, YAO Xuanchu. Spatiotemporal dynamics and driving factor analysis of ecological quality change in the Lhasa urban circle from 1994 to 2017[J]. PROGRESS IN GEOGRAPHY, 2022, 41(3): 437-450.
表1
1994、2017年RSEI的主成分分析结果
年份 | 统计值 | 第一主分量 | 第二主分量 | 第三主分量 | 第四主分量 |
---|---|---|---|---|---|
1994年 | 绿度 | 0.137 | -0.926 | -0.327 | -0.128 |
湿度 | 0.160 | -0.041 | 0.513 | -0.842 | |
热度 | -0.973 | -0.168 | 0.111 | -0.109 | |
干度 | -0.090 | 0.335 | -0.786 | -0.512 | |
特征值 | 0.007 | 0.006 | 0.001 | ≈0 | |
特征值贡献率/% | 50.33 | 41.61 | 7.06 | 1.01 | |
累计贡献率/% | 50.33 | 91.93 | 98.99 | 100.00 | |
2017年 | 绿度 | 0.071 | -0.935 | -0.331 | -0.109 |
湿度 | 0.156 | -0.064 | 0.495 | -0.852 | |
热度 | -0.979 | -0.115 | 0.143 | -0.087 | |
干度 | -0.109 | 0.330 | -0.790 | -0.504 | |
特征值 | 0.006 | 0.004 | 0.001 | ≈0 | |
特征值贡献率/% | 55.35 | 34.77 | 8.57 | 1.31 | |
累计贡献率/% | 55.35 | 90.12 | 98.69 | 100.00 |
表2
1994—2017年拉萨城市圈RSEI的分因子综合结果
指标名称 | 1994年 | 2000年 | 2005年 | 2010年 | 2015年 | 2017年 |
---|---|---|---|---|---|---|
绿度 | 0.137 | 0.066 | 0.341 | 0.041 | 0.133 | 0.071 |
湿度 | 0.160 | 0.148 | 0.136 | 0.122 | 0.179 | 0.156 |
热度 | -0.973 | -0.970 | -0.908 | -0.991 | -0.957 | -0.979 |
干度 | -0.090 | -0.180 | -0.204 | -0.042 | -0.184 | -0.109 |
特征值 | 0.007 | 0.007 | 0.007 | 0.008 | 0.006 | 0.006 |
特征值贡献率/% | 50.33 | 55.75 | 54.83 | 55.66 | 53.13 | 55.35 |
表4
1994—2017年生态质量的气候驱动因子主成分分析结果
指标 | 1994年 | 2000年 | 2005年 | 2010年 | 2015年 | 2017年 |
---|---|---|---|---|---|---|
平均气温 | 0.476 | 0.501 | 0.494 | 0.486 | 0.466 | 0.482 |
气候水分亏缺 | -0.511 | -0.397 | -0.486 | -0.452 | -0.519 | -0.468 |
降水量 | -0.048 | 0.100 | -0.009 | 0.188 | 0.005 | -0.114 |
气压 | -0.372 | -0.414 | -0.384 | -0.390 | -0.388 | -0.407 |
蒸汽压亏缺 | -0.521 | -0.566 | -0.551 | -0.542 | -0.524 | -0.539 |
风速 | 0.316 | 0.300 | 0.261 | 0.280 | 0.297 | 0.280 |
特征值 | 0.100 | 0.088 | 0.089 | 0.095 | 0.103 | 0.096 |
特征贡献量/% | 76.91 | 68.25 | 68.25 | 73.51 | 79.64 | 79.64 |
表5
不同土地利用类型的生态环境质量背景指数
一级地类 | 代码 | 二级地类 | 生态环境质量指数 | 一级地类 | 代码 | 二级地类 | 生态环境质量指数 |
---|---|---|---|---|---|---|---|
耕地 | 11 | 水田 | 0.30 | 水体 | 44 | 永久性冰川雪地 | 0.90 |
12 | 旱地 | 0.25 | 45 | 滩涂 | 0.45 | ||
林地 | 21 | 有林地 | 0.95 | 46 | 滩地 | 0.55 | |
22 | 灌木林 | 0.65 | 建设用地 | 51 | 城镇用地 | 0.20 | |
23 | 疏林地 | 0.45 | 52 | 农村居民点 | 0.20 | ||
24 | 其他林地 | 0.40 | 53 | 其他建设用地 | 0.15 | ||
草地 | 31 | 高覆盖度草地 | 0.75 | 未利用地 | 61 | 沙地 | 0.01 |
32 | 中覆盖度草地 | 0.45 | 62 | 戈壁 | 0.01 | ||
33 | 低覆盖度草地 | 0.20 | 63 | 盐碱地 | 0.05 | ||
水体 | 41 | 河渠 | 0.55 | 64 | 沼泽地 | 0.65 | |
42 | 湖泊 | 0.75 | 65 | 裸土地 | 0.05 | ||
43 | 水库坑塘 | 0.55 | 66 | 裸岩石砾地 | 0.01 |
[1] | 邴正, 蔡禾, 洪大用, 等. “转型与发展: 中国社会建设四十年”笔谈[J]. 社会, 2018,38(6):1-90. |
[ Bing Zheng, Cai He, Hong Dayong, et al. "Transformation and development: Forty years of social construction in China" written talk. Society, 2018,38(6):1-90. ] | |
[2] | 洪银兴, 刘伟, 高培勇, 等. “习近平新时代中国特色社会主义经济思想” 笔谈[J]. 中国社会科学, 2018(9): 4-73, 204-205. |
[ Hong Yinxing, Liu Wei, Gao Peiyong, et al. "Xi Jinping New Era Socialist Economic Thought with Chinese Characteristics" written talk. Chinese Social Sciences, 2018(9): 4-73, 204-205. ] | |
[3] | 国家环境保护部. 生态环境状况评价技术规范(发布稿): 中华人民共和国国家环境保护标准(HJ 192—2015) [S].2015-03-13. |
[ Ministry of Environmental Protection of China. Technical specifications for ecological environment evaluation: National Environmental Protection Standard of the People's Republic of China (HJ 192-2015). 2015-03-13. ] | |
[4] | 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013,33(5):889-897. |
[ Xu Hanqiu. A remote sensing index for assessment of regional ecological changes. China Environmental Science, 2013,33(5):889-897. ] | |
[5] | 施婷婷, 徐涵秋, 孙凤琴, 等. 建设项目引发的区域生态变化的遥感评估: 以敖江流域为例[J]. 生态学报, 2019,39(18):6826-6839. |
[ Shi Tingting, Xu Hanqiu, Sun Feng-qin, et al. Remote-sensing-based assessment of regional ecological changes triggered by a construction project: A case study of Aojiang River Watershed. Acta Ecologica Sinica, 2019,39(18):6826-6839. ] | |
[6] | 王丽春, 焦黎, 来风兵, 等. 基于遥感生态指数的新疆玛纳斯湖湿地生态变化评价[J]. 生态学报, 2019,39(8):2963-2972. |
[ Wang Lichun, Jiao Li, Lai Fengbing, et al. Evaluation of ecological changes based on a remote sensing ecological index in a Manas Lake wetland, Xinjiang. Acta Ecologica Sinica, 2019,39(8):2963-2972. ] | |
[7] | 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013,33(24):7853-7862. |
[ Xu Hanqiu. A remote sensing urban ecological index and its application. Acta Ecologica Sinica, 2013,33(24):7853-7862. ] | |
[8] | Sun C, Li X, Zhang W, et al. Evolution of ecological security in the tableland region of the Chinese Loess Plateau using a remote-sensing-based index[J]. Sustainability, 2020,12(8):3489. doi: 10.3390/su12083489. |
[9] | 徐涵秋, 施婷婷, 王美雅, 等. 雄安新区地表覆盖变化及其新区规划的生态响应预测[J]. 生态学报, 2017,37(19):6289-6301. |
[ Xu Hanqiu, Shi Tingting, Wang Meiya, et al. Land cover changes in the Xiong'an New Area and a prediction of ecological response to forthcoming regional planning. Acta Ecologica Sinica, 2017,37(19):6289-6301. ] | |
[10] | 王士远, 张学霞, 朱彤, 等. 长白山自然保护区生态环境质量的遥感评价[J]. 地理科学进展, 2016,35(10):1269-1278. |
[ Wang Shiyuan, Zhang Xuexia, Zhu Tong, et al. Assessment of ecological environment quality in the Changbai Mountain Nature Reserve based on remote sensing technology. Progress in Geography, 2016,35(10):1269-1278. ] | |
[11] | Xu H Q, Wang Y F, Guan H D, et al. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis[J]. Remote Sensing, 2019,11(20):2345. doi: 10.3390/rs11202345. |
[12] | 王美雅, 徐涵秋. 上海和纽约城市不透水面时空变化及其对生态质量影响的对比[J]. 应用生态学报, 2018,29(11):3735-3746. |
[ Wang Meiya, Xu Hanqiu. Temporal and spatial changes of urban impervious surface and its influence on urban ecolo-gical quality: A comparison between Shanghai and New York. Chinese Journal of Applied Ecology, 2018,29(11):3735-3746. ] | |
[13] | 王胡林. 改革开放40年西藏城镇化发展的回顾与展望[J]. 西藏研究, 2018(5):123-132. |
[ Wang Hulin. Review and outlook of Tibet's urbanization development in the 40 years of reform and opening-up. Tibetan Studies, 2018(5):123-132. ] | |
[14] | 关兴良, 方创琳, 罗奎. 基于空间场能的中国区域经济发展差异评价[J]. 地理科学, 2012,32(9):1055-1065. |
[ Guan Xingliang, Fang Chuanglin, Luo Kui. Regional economic development disparity of China: An application of spatial field. Scientia Geographica Sinica, 2012,32(9):1055-1065. ] | |
[15] | 史继清, 甘臣龙, 边多, 等. 1981—2015 年西藏全区气候季节的变化[J]. 冰川冻土, 2018,40(6):1110-1119. |
[ Shi Jiqing, Gan Chenlong, Bian duo, et al. Variation of seasons in Tibet autonomous region from 1981 to 2015. Journal of Glaciology and Geocryology, 2018,40(6):1110-1119. ] | |
[16] | 李炳元, 潘保田, 程维明, 等. 中国地貌区划新论[J]. 地理学报, 2013,68(3):291-306. |
[ Li Bingyuan, Pan Baotian, Cheng Weiming, et al. Research on geomorphological regionalization of China. Acta Geographica Sinica, 2013,68(3):291-306. ] | |
[17] | El Hajj M, Bégué A, Lafrance B, et al. Relative radiometric normalization and atmospheric correction of a SPOT 5 time series[J]. Sensors, 2008,8(4):2774-2791. |
[18] | Hu C M, Huo L Z, Zhang Z, et al. Automatic cloud removal from multi-temporal landsat collection 1 data using poisson blending [C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, 2019: 1661-1664. |
[19] | 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595. |
[ Xu Hanqiu. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 2005,9(5):589-595. ] | |
[20] | Moreno-Martínez Á, Izquierdo-Verdiguier E, Maneta M P, et al. Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud[J]. Remote Sensing of Environment, 2020,247:111901. doi: 10.1016/j.rse.2020.111901. |
[21] | Ghamisi P, Rasti B, Yokoya N, et al. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2019,7(1):6-39. |
[22] | 陈炜, 黄慧萍, 田亦陈, 等. 基于Google Earth Engine 平台的三江源地区生态环境质量动态监测与分析[J]. 地球信息科学学报, 2019,21(9):1382-1391. |
[ Chen Wei, Huang Huiping, Tian Yichen, et al. Monitoring and assessment of the eco-environment quality in the Sanjiangyuan region based on google earth engine. Journal of Geo-information Science, 2019,21(9):1382-1391. ] | |
[23] | Demšar U, Harris P, Brunsdon C, et al. Principal component analysis on spatial data: An overview[J]. Annals of the Association of American Geographers, 2013,103(1):106-128. |
[24] | Lever J, Krzywinski M, Altman N. Principal component analysis[J]. Nature Methods, 2017,14(7):641-642. |
[25] | Li H, Liu L, Shan B Y, et al. Spatiotemporal variation of drought and associated multi-scale response to climate change over the Yarlung Zangbo River Basin of Qinghai-Tibet Plateau, China[J]. Remote Sensing, 2019,11(13):1596. doi: 10.3390/rs11131596. |
[26] | Chen J H, Yan F, Lu Q. Spatiotemporal variation of vegetation on the Qinghai-Tibet Plateau and the influence of climatic factors and human activities on vegetation trend(2000-2019)[J]. Remote Sensing, 2020,12(19):3150. doi: 10.3390/rs12193150. |
[27] | Li X L, Gao J, Brierley G, et al. Rangeland degradation on the Qinghai‐Tibet Plateau: Implications for rehabilitation[J]. Land Degradation & Development, 2013,24(1):72-80. |
[28] | Liu X, Yang W J, Zhao H P, et al. Effects of the freeze-thaw cycle on potential evapotranspiration in the permafrost regions of the Qinghai-Tibet Plateau, China[J]. Science of the Total Environment, 2019,687:257-266. |
[29] | Cui W H, Sun Z Y, Ma H, et al. The correlation analysis of atmospheric model accuracy based on the Pearson correlation criterion[J]. IOP Conference Series: Materials Science and Engineering, 2020,780:032045. doi: 10.1088/1757-899X/780/3/032045. |
[30] | Hauke J, Kossowski T. Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data[J]. Quaestiones Geographicae, 2011,30(2):87-93. |
[31] | Adar M, Najih Y, Gouskir M, et al. Three PV plants performance analysis using the principal component analysis method[J]. Energy, 2020,207:118315. doi: 10.1016/j.energy.2020.118315. |
[32] | Du J Y, Kimball J S, Reichle R H, et al. Global satellite retrievals of the near-surface atmospheric vapor pressure deficit from AMSR-E and AMSR2[J]. Remote sensing, 2018,10(8):1175. doi: 10.3390/rs10081175. |
[33] | Rao K, Anderegg W R L, Sala A, et al. Satellite-based vegetation optical depth as an indicator of drought-driven tree mortality[J]. Remote Sensing of Environment, 2019,227:125-136. |
[34] | 李晓文, 方创琳, 黄金川, 等. 西北干旱区城市土地利用变化及其区域生态环境效应: 以甘肃河西地区为例[J]. 第四纪研究, 2003,23(3):280-290, 348. |
[ Li Xiao-wen, Fang Chuanglin, Huang Jinchuan, et al. The urban land use transformations and associated effects on eco-environment in northwest China arid region: A case study in Hexi region, Gansu Province. Quaternary Sciences, 2003,23(3):280-290, 348. ] | |
[35] | 陈万旭, 李江风, 曾杰, 等. 中国土地利用变化生态环境效应的空间分异性与形成机理[J]. 地理研究, 2019,38(9):2173-2187. |
[ Chen Wanxu, Li Jiangfeng, Zeng Jie, et al. Spatial heterogeneity and formation mechanism of eco-environmental effect of land use change in China. Geographical Research, 2019,38(9):2173-2187. ] | |
[36] | Cheng G D, Zhao L, Li R, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019,64(27):2783-2795. |
[37] | Wang C Y, Wang S, Wu B D, et al. Ecological restoration treatments enhanced plant and soil microbial diversity in the degraded alpine steppe in Northern Tibet[J]. Land Degradation & Development, 2021,32(2):723-737. |
[38] | Yuan W P, Zheng Y, Piao S L, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 2019, 5(8): eaax1396. doi: 10.1126/sciadv.aax1396. |
[39] | Abatzoglou J T, Dobrowski S Z, Parks S A, et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958 -2015[J]. Scientific Data, 2018,5:170191. doi: 10.1038/sdata.2017.191. |
[40] | Cui M Y, Wang J B, Wang S Q, et al. Temporal and spatial distribution of evapotranspiration and its influencing factors on Qinghai-Tibet Plateau from 1982 to 2014[J]. Journal of Resources and Ecology, 2019,10(2):213-224. |
[41] | Li C X, de Jong R, Schmid B, et al. Changes in grassland cover and in its spatial heterogeneity indicate degradation on the Qinghai-Tibetan Plateau[J]. Ecological Indicators, 2020,119:106641. doi: 10.1016/j.ecolind.2020.106641. |
[42] | 中国科技财富. 今年西藏自治区将启动大规模国土绿化行动 [DB/OL]. 拉萨日报, 2018- 03- 01 [2021-01-10]. http://caifu.kepuing.com/specialforestry/ydylstjs/201803/t20180316_2987892.shtml. |
[China Science and Technology Wealth. The Tibet Autonomous Region will launch a large-scale land greening campaign this year. Lhasa Daily, 2018-03-01 [2021-01-10]. http://caifu.kepuing.com/specialforestry/ydylstjs/201803/t20180316_2987892.shtml. ] |
[1] | 章家恩, 徐琪. 生态系统退化的动力学解释及其定量表达探讨[J]. 地理科学进展, 2003, 22(3): 251-259. |
|