地理科学进展 ›› 2021, Vol. 40 ›› Issue (10): 1664-1677.doi: 10.18306/dlkxjz.2021.10.005
张鹏1,2(), 胡守庚1,2,*(
), 杨剩富1,2, 成佩昆1,3
收稿日期:
2020-11-22
修回日期:
2021-06-15
出版日期:
2021-10-28
发布日期:
2021-12-28
通讯作者:
*胡守庚(1978— ),男,浙江庆元人,博士,教授,博士生导师,主要从事土地利用与城乡发展研究。E-mail: husg2009@gmail.com作者简介:
张鹏(1993— ),男,河南泌阳人,博士生,主要从事土地利用时空信息分析与模拟研究。E-mail: zhangpeng_cug@163.com
基金资助:
ZHANG Peng1,2(), HU Shougeng1,2,*(
), YANG Shengfu1,2, CHENG Peikun1,3
Received:
2020-11-22
Revised:
2021-06-15
Online:
2021-10-28
Published:
2021-12-28
Supported by:
摘要:
精准刻画城市住宅地价分布特征,对于科学引导城市空间布局规划、有效实现城市精明增长等具有重要意义。而城市住宅地价与其潜在影响因素之间的复杂非线性关系,给地价分布精细模拟带来了挑战。论文旨在探索基于地理大数据和集成学习的城市住宅地价分布模拟方法体系,以满足快速、精准监测地价动态变化的需要。选取武汉市为典型区,以住宅用地交易样点、兴趣点(points of interest, POI)和夜间灯光影像为数据源,以500 m分辨率网格为估价单元,提取POI核密度和夜间灯光强度作为住宅地价预测变量,采用机器学习算法和bagging、stacking集成方法构建住宅地价预测模型,并对比分析其精度。研究发现:① 单个机器学习算法中,支持向量回归(support vector regression, SVR)预测精度最高,接下来依次是k最近邻算法(k-nearest neighbor algorithm, k-NN)、高斯过程回归(Gaussian process regression, GPR)和BP神经网络(back propagation neural networks, BP-NN);② 在提升单个算法预测精度方面,stacking方法的性能优于bagging方法,使用stacking集成SVR和k-NN的地价预测模型精度最高,其平均绝对百分误差仅为8.29%,拟合优度R2达0.814;③ 基于论文所构建模型生成的城市住宅地价分布图能有效表征价格圈层分布特征和局部奇异性。研究结果可为城市住宅地价评估提供新的思路和方法借鉴。
张鹏, 胡守庚, 杨剩富, 成佩昆. 基于多源数据和集成学习的城市住宅地价分布模拟——以武汉市为例[J]. 地理科学进展, 2021, 40(10): 1664-1677.
ZHANG Peng, HU Shougeng, YANG Shengfu, CHENG Peikun. Modeling urban residential land price distribution using multi-source data and ensemble learning: A case of Wuhan City[J]. PROGRESS IN GEOGRAPHY, 2021, 40(10): 1664-1677.
表1
住宅地价预测变量选择及量化
类别 | 变量 | 数据源 | 参考文献 | 类别 | 变量 | 数据源 | 参考文献 |
---|---|---|---|---|---|---|---|
商服繁华度 | 商场核密度 | POI | [ | 医疗条件 | 医院核密度 | POI | [ |
超市核密度 | POI | [ | 交通便捷度 | 公交站核密度 | POI | [ | |
生活设施核密度 | POI | [ | 地铁站核密度 | POI | [ | ||
教育条件 | 大学核密度 | POI | [ | 居住环境 | 公园广场核密度 | POI | [ |
中学核密度 | POI | [ | 距最近水体距离 | 土地利用现状数据 | [ | ||
小学核密度 | POI | [ | 夜间灯光 | 夜间灯光像素值 | NPP-VIIRS影像 | [ |
表5
stacking #1与其余集成模型的MAE差异的Wilcoxon符号秩检验结果
运行次数 | B_GPR | B_k-NN | B_BP-NN | B_SVR | stacking #2 | stacking #3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE差异 | 秩 | MAE差异 | 秩 | MAE差异 | 秩 | MAE差异 | 秩 | MAE差异 | 秩 | MAE差异 | 秩 | ||||||
1 | -610.55 | 1 | -200.33 | 6 | -600.41 | 1 | -139.96 | 2 | -10.22 | 8 | -5.49 | 3 | |||||
2 | -629.66 | 5 | -190.31 | 3 | -635.75 | 7 | -183.10 | 5 | -7.02 | 5 | -8.26 | 5 | |||||
3 | -625.41 | 2 | -216.81 | 9 | -611.44 | 3 | -171.72 | 3 | -10.82 | 9 | -5.77 | 4 | |||||
4 | -630.42 | 6 | -218.38 | 10 | -647.00 | 9 | -183.25 | 6 | -8.86 | 7 | -14.84 | 7 | |||||
5 | -631.42 | 7 | -198.12 | 5 | -613.62 | 4 | -132.76 | 1 | -14.05 | 10 | -18.44 | 9 | |||||
6 | -654.50 | 10 | -213.26 | 8 | -606.55 | 2 | -219.31 | 10 | -4.47 | 2 | -1.98 | 1 | |||||
7 | -625.84 | 4 | -205.48 | 7 | -639.70 | 8 | -192.83 | 9 | -8.12 | 6 | -17.64 | 8 | |||||
8 | -625.73 | 3 | -179.01 | 1 | -623.23 | 5 | -183.57 | 7 | -4.83 | 3 | -3.83 | 2 | |||||
9 | -636.82 | 8 | -181.17 | 2 | -635.56 | 6 | -176.81 | 4 | -1.46 | 1 | -10.56 | 6 | |||||
10 | -642.45 | 9 | -194.39 | 4 | -649.68 | 10 | -186.16 | 8 | -5.32 | 4 | -22.88 | 10 | |||||
R+ | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||
R- | 55 | 55 | 55 | 55 | 55 | 55 | |||||||||||
Z值 | –2.803 | –2.803 | –2.803 | –2.803 | –2.803 | –2.803 |
[1] | 况伟大, 李涛. 土地出让方式、地价与房价[J]. 金融研究, 2012(8):56-69. |
[ Kuang Weida, Li Tao. Land sale pattern, land price and real estate price. Journal of Financial Research, 2012(8):56-69. ] | |
[2] |
Ding C R, Zhao X S. Land market, land development and urban spatial structure in Beijing[J]. Land Use Policy, 2014, 40:83-90.
doi: 10.1016/j.landusepol.2013.10.019 |
[3] |
Zou Y H, Mason R, Zhong R J. Modeling the polycentric evolution of post-Olympic Beijing: An empirical analysis of land prices and development intensity[J]. Urban Geography, 2015, 36(5):735-756.
doi: 10.1080/02723638.2015.1027121 |
[4] | 邓羽, 刘盛和, 姚峰峰, 等. 基于协同克里格的基准地价评估及空间结构分析[J]. 地理科学进展, 2009, 28(3):403-408. |
[ Deng Yu, Liu Shenghe, Yao Fengfeng, et al. Standard land price appraisal and space structure analysis based on co-kriging. Progress in Geography, 2009, 28(3):403-408. ] | |
[5] | 邹如, 伍育鹏, 章文波. 浅析中国基准地价体系的现状与发展[J]. 中国土地科学, 2012, 26(3):49-54. |
[ Zou Ru, Wu Yupeng, Zhang Wenbo. Preliminary analysis on the status and trend of land benchmark pricing system in China. China Land Sciences, 2012, 26(3):49-54. ] | |
[6] | 王华, 罗平, 张杰. 引入深度学习的城市基准地价评估模型研究[J]. 中国土地科学, 2018, 32(9):59-65. |
[ Wang Hua, Luo Ping, Zhang Jie. A new appraisal model for urban land benchmark price based on deep learning. China Land Science, 2018, 32(9):59-65. ] | |
[7] |
包善驹, 陆林. 合肥城市规划引导空间演进对地价时空演变的影响[J]. 地理学报, 2015, 70(6):906-918.
doi: 10.11821/dlxb201506005 |
[ Bao Shanju, Lu Lin. Impact of planning-guided spatial evolvement on temporal-spatial evolution of land price: Taking Hefei as an example. Acta Geographica Sinica, 2015, 70(6):906-918. ] | |
[8] |
杨叠涵, 陈江龙, 袁丰. 南京城市空间重构对土地出让时空演化影响研究[J]. 地理科学进展, 2015, 34(2):246-256.
doi: 10.11820/dlkxjz.2015.02.013 |
[ Yang Diehan, Chen Jianglong, Yuan Feng. Impact of urban spatial restructuring on spatial-temporal evolution of land leasing in Nanjing City. Progress in Geography, 2015, 34(2):246-256. ] | |
[9] |
Yang S F, Hu S G, Wang S L, et al. Effects of rapid urban land expansion on the spatial direction of residential land prices: Evidence from Wuhan, China[J]. Habitat International, 2020, 101:102186. doi: 10.1016/j.habitatint.2020.102186.
doi: 10.1016/j.habitatint.2020.102186 |
[10] |
Davis M A, Oliner S D, Pinto E J, et al. Residential land values in the Washington, DC metro area: New insights from big data[J]. Regional Science and Urban Economics, 2017, 66:224-246.
doi: 10.1016/j.regsciurbeco.2017.06.006 |
[11] | 刘瑜, 詹朝晖, 朱递, 等. 集成多源地理大数据感知城市空间分异格局[J]. 武汉大学学报(信息科学版), 2018, 43(3):327-335. |
[ Liu Yu, Zhan Zhaohui, Zhu Di, et al. Incorporating multi-source big geo-data to sense spatial heterogeneity patterns in an urban space. Geomatics and Information Science of Wuhan University, 2018, 43(3):327-335. ] | |
[12] | 张祚, 卢新海, 罗翔, 等. 城市住宅基准地价的三维可视化与空间形态分析: 以武汉市中心城区为例[J]. 清华大学学报(自然科学版), 2018, 58(10):941-952. |
[ Zhang Zuo, Lu Xinhai, Luo Xiang, et al. 3-D-visualization and spatial morphology analysis of urban benchmark land prices for residential use: A case study of Wuhan, China. Journal of Tsinghua University (Science and Technology), 2018, 58(10):941-952. ] | |
[13] | 阚博颖, 濮励杰, 徐彩瑶, 等. 基于GWR模型的南京主城区住宅地价空间异质性驱动因素研究[J]. 经济地理, 2019, 39(3):100-107. |
[ Kan Boying, Pu Lijie, Xu Caiyao, et al. Driving factors on the spatial heterogeneity of residential land price in downtown Nanjing based on GWR model. Economic Geography, 2019, 39(3):100-107. ] | |
[14] |
Hu S G, Cheng Q M, Wang L, et al. Modeling land price distribution using multifractal IDW interpolation and fractal filtering method[J]. Landscape and Urban Planning, 2013, 110:25-35.
doi: 10.1016/j.landurbplan.2012.09.008 |
[15] |
Zhang P, Hu S G, Li W D, et al. Modeling fine-scale residential land price distribution: An experimental study using open data and machine learning[J]. Applied Geography, 2021, 129:102442. doi: 10.1016/j.apgeog.2021.102442.
doi: 10.1016/j.apgeog.2021.102442 |
[16] | Alonso W. Location and land use: Toward a general theory of land rent[M]. Cambridge, USA: Harvard University Press, 1964. |
[17] | 吴宇哲, 吴次芳. 基于Kriging技术的城市基准地价评估研究[J]. 经济地理, 2001, 21(5):584-588. |
[ Wu Yuzhe, Wu Cifang. A study on kriging-based urban base and standard land value assessment: Taking Hangzhou City as a case. Economic Geography, 2001, 21(5):584-588. ] | |
[18] | 蒋芳, 朱道林. 基于GIS的地价空间分布规律研究: 以北京市住宅地价为例[J]. 经济地理, 2005, 25(2):199-202. |
[ Jiang Fang, Zhu Daolin. A GIS-based study on spatial distribution of land prices: The case of residential land prices in Beijing. Economic Geography, 2005, 25(2):199-202. ] | |
[19] | 胡守庚, 成秋明. 基于多重分形的城市地价场构建方法研究[J]. 中国土地科学, 2012, 26(1):38-44, 66, 97. |
[ Hu Shougeng, Cheng Qiuming. Developing urban land price field using multi-fractal method. China Land Sciences, 2012, 26(1):38-44, 66, 97. ] | |
[20] |
Derdouri A, Murayama Y. A comparative study of land price estimation and mapping using regression kriging and machine learning algorithms across Fukushima prefecture, Japan[J]. Journal of Geographical Sciences, 2020, 30(5):794-822.
doi: 10.1007/s11442-020-1756-1 |
[21] | 任辉, 吴群. 基于ESDA的城市住宅地价时空分异研究: 以南京市为例[J]. 经济地理, 2011, 31(5):760-765. |
[ Ren Hui, Wu Qun. Study on urban residential land price time-spatial differentiation based on ESDA analysis: A case study of Nanjing City. Economic Geography, 2011, 31(5):760-765. ] | |
[22] |
崔娜娜, 冯长春, 宋煜. 北京市居住用地出让价格的空间格局及影响因素[J]. 地理学报, 2017, 72(6):1049-1062.
doi: 10.11821/dlxb201706008 |
[ Cui Nana, Feng Changchun, Song Yu. Spatial pattern of residential land parcels and determinants of residential land price in Beijing since 2004. Acta Geographica Sinica, 2017, 72(6):1049-1062. ] | |
[23] | 郑新奇, 王家耀, 阎弘文, 等. 数字地价模型在城市地价时空分析中的应用[J]. 资源科学, 2004, 26(1):14-21. |
[ Zheng Xinqi, Wang Jiayao, Yan Hongwen, et al. Design and application of digital land price model for land price evolvement in urban area. Resources Science, 2004, 26(1):14-21. ] | |
[24] | 张丽芳, 濮励杰, 张静, 等. 基于Hedonic模型的城市地价空间结构分析: 以湖南省娄底市为例[J]. 经济地理, 2009, 29(9):1475-1480. |
[ Zhang Lifang, Pu Lijie, Zhang Jing, et al. Analysis on the space frame of city land price based on the hedonic model: Taking Loudi City of Hunan Province as an example. Economic Geography, 2009, 29(9):1475-1480. ] | |
[25] |
瞿诗进, 胡守庚, 李全峰, 等. 城市住宅地价影响因素的定量识别与时空异质性: 以武汉市为例[J]. 地理科学进展, 2018, 37(10):1371-1380.
doi: 10.18306/dlkxjz.2018.10.007 |
[ Qu Shijin, Hu Shougeng, Li Quanfeng, et al. Quantitative evaluation of the impacts of driving factors on urban residential land price and analysis of their spatio-temporal heterogeneity: A case study of Wuhan City. Progress in Geography, 2018, 37(10):1371-1380. ] | |
[26] |
Glaesener M L, Caruso G. Neighborhood green and services diversity effects on land prices: Evidence from a multilevel hedonic analysis in Luxembourg[J]. Landscape and Urban Planning, 2015, 143:100-111.
doi: 10.1016/j.landurbplan.2015.06.008 |
[27] |
Glumac B, Herrera-Gomez M, Licheron J. A hedonic urban land price index[J]. Land Use Policy, 2019, 81:802-812.
doi: 10.1016/j.landusepol.2018.11.032 |
[28] | 吕萍, 甄辉. 基于GWR模型的北京市住宅用地价格影响因素及其空间规律研究[J]. 经济地理, 2010, 30(3):472-478. |
[ Lv Ping, Zhen Hui. Affecting factors research of Beijing residential land price based on GWR model. Economic Geography, 2010, 30(3):472-478. ] | |
[29] |
Hu S G, Yang S F, Li W D, et al. Spatially non-stationary relationships between urban residential land price and impact factors in Wuhan City, China[J]. Applied Geography, 2016, 68:48-56.
doi: 10.1016/j.apgeog.2016.01.006 |
[30] |
韩娟, 金晓斌, 张志宏, 等. 中国住宅出让地价发育特征及其影响因素分析[J]. 地理科学, 2017, 37(4):573-584.
doi: 10.13249/j.cnki.sgs.2017.04.011 |
[ Han Juan, Jin Xiaobin, Zhang Zhihong, et al. Development characteristics and factors analysis of residential land price in China. Scientia Geographica Sinica, 2017, 37(4):573-584. ] | |
[31] | 张鹏, 胡守庚, 瞿诗进. 城市中心对地价空间分布作用的非均质扩散规律[J]. 地理与地理信息科学, 2018, 34(2):79-86. |
[ Zhang Peng, Hu Shougeng, Qu Shijin. Research on the non-homogeneous diffusion law of urban center on spatial distribution of land price. Geography and Geo-Information Science, 2018, 34(2):79-86. ] | |
[32] |
Nakamura H. Relationship among land price, entrepreneurship, the environment, economics, and social factors in the value assessment of Japanese cities[J]. Journal of Cleaner Production, 2019, 217:144-152.
doi: 10.1016/j.jclepro.2019.01.201 |
[33] |
Ma J, Cheng J C P, Jiang F F, et al. Analyzing driving factors of land values in urban scale based on big data and non-linear machine learning techniques[J]. Land Use Policy, 2020, 94:104537. doi: 10.1016/j.landusepol.2020.104537.
doi: 10.1016/j.landusepol.2020.104537 |
[34] |
Qu S J, Hu S G, Li W D, et al. Temporal variation in the effects of impact factors on residential land prices[J]. Applied Geography, 2020, 114:102124. doi: 10.1016/j.apgeog.2019.102124.
doi: 10.1016/j.apgeog.2019.102124 |
[35] |
Hu L R, He S J, Han Z X, et al. Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies[J]. Land Use Policy, 2019, 82:657-673.
doi: 10.1016/j.landusepol.2018.12.030 |
[36] | 刘宣, 黄江明, 赵冠华. 基于机器学习方法的城市社区尺度商铺租金空间布局分析[J]. 中国土地科学, 2021, 35(3):49-57. |
[ Liu Xuan, Huang Jiangming, Zhao Guanhua. A machine learning approach for community-scale commercial rents mapping. China Land Science, 2021, 35(3):49-57. ] | |
[37] |
Park B, Bae J K. Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data[J]. Expert Systems with Applications, 2015, 42(6):2928-2934.
doi: 10.1016/j.eswa.2014.11.040 |
[38] |
Kang Y H, Zhang F, Peng W Z, et al. Understanding house price appreciation using multi-source big geo-data and machine learning[J]. Land Use Policy, 2020: 104919. doi: 10.1016/j.landusepol.2020.104919.
doi: 10.1016/j.landusepol.2020.104919 |
[39] | Zhou Z H. Ensemble methods: Foundations and algorithms[M]. Boca Raton, USA: CRC Press, 2012. |
[40] | Graczyk M, Lasota T, Trawiński B, et al. Comparison of bagging, boosting and stacking ensembles applied to real estate appraisal[C]// Nguyen N T, Le M T, Świątek J. Intelligent information and database systems. Berlin, Germany: Springer, 2010: 340-350. |
[41] |
Chen Y M, Liu X P, Li X, et al. Mapping the fine-scale spatial pattern of housing rent in the metropolitan area by using online rental listings and ensemble learning[J]. Applied Geography, 2016, 75:200-212.
doi: 10.1016/j.apgeog.2016.08.011 |
[42] |
Zhang Z, Li J M, Luo X, et al. Urban lake spatial openness and relationship with neighboring land prices: Exploratory geovisual analytics for essential policy insights[J]. Land Use Policy, 2020, 92:104479. doi: 10.1016/j.landusepol.2020.104479.
doi: 10.1016/j.landusepol.2020.104479 |
[43] |
Li C, Zou L, Wu Y, et al. Potentiality of using Luojia1-01 night-time light imagery to estimate urban community housing price: A case study in Wuhan, China[J]. Sensors, 2019, 19(14):3167. doi: 10.3390/s19143167.
doi: 10.3390/s19143167 |
[44] |
Zhao M, Cheng W M, Zhou C H, et al. GDP spatialization and economic differences in south China based on NPP-VIIRS nighttime light imagery[J]. Remote Sensing, 2017, 9(7):673. doi: 10.3390/rs9070673.
doi: 10.3390/rs9070673 |
[45] |
Tan M H, Li X B, Li S J, et al. Modeling population density based on nighttime light images and land use data in China[J]. Applied Geography, 2018, 90:239-247.
doi: 10.1016/j.apgeog.2017.12.012 |
[46] |
Li C, Zhu H L, Ye X Y, et al. Study on average housing prices in the inland capital cities of China by night-time light remote sensing and official statistics data[J]. Scientific Reports, 2020, 10:7732. doi: 10.1038/s41598-020-64506-2.
doi: 10.1038/s41598-020-64506-2 |
[47] |
Gu J R, Zhu M C, Jiang L. Housing price forecasting based on genetic algorithm and support vector machine[J]. Expert Systems with Applications, 2011, 38(4):3383-3386.
doi: 10.1016/j.eswa.2010.08.123 |
[48] | Srivastava S. Weka: A tool for data preprocessing, classification, ensemble, clustering and association rule mining[J]. International Journal of Computer Applications, 2014, 88(10):26-29. |
[49] | Demšar J. Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7:1-30. |
[1] | 王安琪, 彭建东, 任鹏, 杨红, 代琦. 轨道站点周边建成环境对残疾人出行行为的影响研究——以武汉市189个轨道站点为例[J]. 地理科学进展, 2021, 40(7): 1127-1140. |
[2] | 谢波, 王潇, 伍蕾. 基于自然实验的城市绿色空间对居民心理健康的影响研究——以武汉东湖绿道为例[J]. 地理科学进展, 2021, 40(7): 1141-1153. |
[3] | 朱邦耀. 地方饮食到全国小吃:兰州拉面和沙县小吃空间扩散的案例研究[J]. 地理科学进展, 2021, 40(6): 991-999. |
[4] | 卢新海, 蔡大伟, 曾晨. 基于空间分位数模型的住宅价格分异的影响因素研究——以武汉市为例[J]. 地理科学进展, 2021, 40(2): 283-292. |
[5] | 邬柯杰, 吴吉东, 叶梦琪. 社交媒体数据在自然灾害应急管理中的应用研究综述[J]. 地理科学进展, 2020, 39(8): 1412-1422. |
[6] | 李智轩, 何仲禹, 张一鸣, 金霜霜, 王雪梅, 朱捷, 刘师岑. 绿色环境暴露对居民心理健康的影响研究——以南京为例[J]. 地理科学进展, 2020, 39(5): 779-791. |
[7] | 谢铖, 黄波, 刘晓倩, 周涛, 王宇. 基于手机定位数据的深圳市热浪人口暴露度分析[J]. 地理科学进展, 2020, 39(2): 231-242. |
[8] | 吴燕, 李红波. 大都市城乡融合区空间演进及内在关联性测度——基于武汉市夜间灯光数据[J]. 地理科学进展, 2020, 39(1): 13-23. |
[9] | 罗静,蒋亮,罗名海,田玲玲,陈国磊,田野,吴益坤. 武汉市新城区乡村发展水平评价及规模等级结构研究[J]. 地理科学进展, 2019, 38(9): 1370-1381. |
[10] | 田野, 罗静, 孙建伟, 董莹, 陈国磊. 武汉城市圈内部空间联系及其轴-辐网络结构演化[J]. 地理科学进展, 2019, 38(7): 1093-1102. |
[11] | 张金亭, 赵玉丹, 田扬戈, 何青青, 庄艳华, 彭韵羲, 洪松. 大气污染物排放量与颗粒物环境空气质量的空间非协同耦合研究——以武汉市为例[J]. 地理科学进展, 2019, 38(4): 612-624. |
[12] | 李钢, 陈未雨, 杨兰, 刘倩, 陈曦亮. 武汉市快递自提点的空间格局与集聚模式研究[J]. 地理科学进展, 2019, 38(3): 407-416. |
[13] | 杨智威, 陈颖彪, 吴志峰, 千庆兰, 黄清瑶. 基于自然区块的城市热环境空间分异性研究[J]. 地理科学进展, 2019, 38(12): 1944-1956. |
[14] | 毛帅永, 焦利民, 许刚, 李泽慧. 基于多源数据的武汉市多中心空间结构识别[J]. 地理科学进展, 2019, 38(11): 1675-1683. |
[15] | 高静, 龚健, 李靖业. “源-汇”景观格局的热岛效应研究——以武汉市为例[J]. 地理科学进展, 2019, 38(11): 1770-1782. |
|