地理科学进展 ›› 2020, Vol. 39 ›› Issue (10): 1747-1757.doi: 10.18306/dlkxjz.2020.10.013
收稿日期:
2019-09-22
修回日期:
2020-05-02
出版日期:
2020-10-28
发布日期:
2020-12-28
作者简介:
殷水清(1980— ),女,湖南省宁乡市人,副教授,博士,主要从事降水随机模拟、气候及其变化对土壤侵蚀的影响评价研究。E-mail: 基金资助:
Received:
2019-09-22
Revised:
2020-05-02
Online:
2020-10-28
Published:
2020-12-28
Supported by:
摘要:
土壤侵蚀是中国严峻的环境问题之一。土壤侵蚀模型是诊断和防治土壤侵蚀问题的有力工具。降雨随机模拟模型可以弥补观测资料在时空尺度上的不足,满足土壤侵蚀模型对降雨过程数据的需求。论文总结了降雨过程基本特征、随机模拟的研究进展以及未来的发展方向。主要结论有:① 最小降雨间歇(Minimum Inter-event Time, MIT)为分割次降雨的最小时间间隔,当干期小于该临界值,则合并为1次降雨;否则分割为2次独立的次降雨事件。采用指数方法计算得到中国中东部最小降雨间歇变化于7.6~16.6 h 之间,平均值为10.7 h;当MIT值较小时,次降雨过程参数如次雨量、历时、平均雨强与峰值雨强等对MIT的变化敏感。② 降雨的时程分配特征反映次降雨量在降雨过程中的分配,是降雨过程随机模拟的重要方面。采用Huff雨型分析方法得到中国降雨以峰值出现在前期的降雨为主,峰值出现在前1/2时段的降雨占65.1%;峰值出现在前期的降雨事件,与峰值出现在后期的降雨事件相比,历时较短、雨强较大。③ 美国农业部水蚀预报项目WEPP中自带的天气随机模型CLIGEN能较好地模拟日雨量,整体上低估次降雨历时,高估峰值雨强;且对于不同大小的日雨量等级,次降雨历时和峰值雨强的偏差方向和程度不一致。④ CLIGEN的参数输入需要降雨过程观测资料,难以获取,小时降雨观测资料相对更易获取,基于此,发展了使用小时降雨数据计算CLIGEN中2个与降雨过程相关的参数TimePk和MX.5P的方法。未来需加强随机模型对极值的模拟能力,以及建立多站点、多气象要素相关的天气条件约束型随机模型。
殷水清, 王文婷. 土壤侵蚀研究中降雨过程随机模拟综述[J]. 地理科学进展, 2020, 39(10): 1747-1757.
YIN Shuiqing, WANG Wenting. A review on the stochastic simulation of rainfall process data for soil erosion assessment[J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1747-1757.
表1
常见次降雨过程特征参数"
指标 | 常用符号 | 单位 | 定义 |
---|---|---|---|
最小降雨间歇 | MIT | h | 分割次降雨的最小时间间隔,当干期小于该临界值,则合并为1次降雨;否则划分为2次独立的次降雨事件 |
次降雨量 | P | mm | 一次降雨过程内产生的降雨量总和 |
次降雨历时 | D | h | 次降雨过程的总时长,次降雨过程内部的干期成为次降雨历时的一部分 |
次降雨平均雨强 | I | mm/h | 次降雨量除以次降雨历时 |
次降雨峰值雨强 | I1、I5、I30 | mm/h | 次降雨过程中最大的时段雨强,比如最大1 min、5 min、30 min雨强,最大小时雨强等 |
到达峰值雨强的时刻 | tp | h | 从降雨开始至到达峰值雨强时刻的时间 |
时程雨型 | 降雨过程中雨量随历时的分配,反映了降雨发生、发展和消亡的过程 |
表2
基于分钟与小时资料通过指数方法计算得到的18站MITexp"
站名 | 基于分钟资料计算 | 基于小时资料计算 | 相对偏差/% |
---|---|---|---|
嫩江 | 10.2 | 9.2 | -9.8 |
通河 | 12.9 | 11.9 | -7.8 |
五寨 | 7.9 | 6.8 | -13.9 |
绥德 | 8.9 | 8.0 | -10.1 |
延安 | 9.0 | 7.8 | -13.3 |
阳城 | 8.6 | 7.7 | -10.5 |
密云 | 10.1 | 9.3 | -7.9 |
北京 | 11.9 | 11.9 | 0 |
成都 | 7.9 | 7.1 | -10.1 |
西昌 | 9.1 | 8.4 | -7.7 |
腾冲 | 11.1 | 10.8 | -2.7 |
昆明 | 12.7 | 11.8 | -7.1 |
房县 | 7.8 | 6.8 | -12.8 |
遂宁 | 8.2 | 7.6 | -7.3 |
内江 | 7.6 | 6.9 | -9.2 |
黄石 | 14.7 | 14.0 | -4.8 |
福州 | 16.6 | 15.6 | -6.0 |
长汀 | 16.5 | 15.6 | -5.5 |
平均值 | 10.7 | 9.8 | -8.1 |
标准差 | 2.9 | 3.0 | 3.6 |
表3
最小降雨间歇分别为1 h、2 h、6 h 和各站MITexp时,次降雨过程特征参数的平均值统计特征"
站点 | 雨量P/mm | 历时D/h | 平均雨强I/(mm/h) | 峰值雨强I30/(mm/h) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 h | 6 h | 10 h | MITexp | 2 h | 6 h | 10 h | MITexp | 2 h | 6 h | 10 h | MITexp | 2 h | 6 h | 10 h | MITexp | ||||
嫩江 | 6.3 | 9.1 | 11.3 | 11.3 | 6.6 | 15.8 | 24.1 | 24.5 | 1.3 | 0.8 | 0.7 | 0.7 | 5.5 | 6.7 | 7.6 | 7.6 | |||
通河 | 6.3 | 8.8 | 10.8 | 12.0 | 5.5 | 11.7 | 18.1 | 22.5 | 1.6 | 1.1 | 0.8 | 0.7 | 5.7 | 6.7 | 7.5 | 7.8 | |||
五寨 | 6.3 | 8.1 | 9.1 | 8.6 | 5.2 | 8.3 | 10.8 | 9.5 | 1.7 | 1.5 | 1.4 | 1.5 | 4.9 | 5.7 | 6.0 | 5.8 | |||
绥德 | 7.1 | 9.1 | 10.1 | 9.8 | 5.6 | 9.2 | 11.6 | 10.8 | 1.9 | 1.8 | 1.7 | 1.7 | 5.4 | 6.3 | 6.7 | 6.6 | |||
延安 | 8.2 | 10.3 | 11.4 | 11.1 | 6.7 | 10.2 | 12.9 | 12.2 | 1.9 | 1.7 | 1.5 | 1.6 | 5.7 | 6.5 | 6.9 | 6.8 | |||
阳城 | 9.5 | 12.0 | 13.3 | 13.0 | 8.4 | 13.0 | 15.9 | 15.2 | 1.4 | 1.3 | 1.2 | 1.2 | 6.5 | 7.6 | 8.1 | 8.0 | |||
密云 | 10.5 | 12.8 | 14.3 | 14.4 | 5.2 | 7.9 | 10.2 | 10.2 | 2.8 | 2.6 | 2.5 | 2.4 | 9.2 | 10.5 | 11.2 | 11.3 | |||
北京 | 9.6 | 12.3 | 13.6 | 14.5 | 4.7 | 8.3 | 10.7 | 12.6 | 2.4 | 2.1 | 2.0 | 1.8 | 8.2 | 9.7 | 10.4 | 10.7 | |||
成都 | 10.1 | 12.7 | 14.7 | 13.6 | 7.6 | 12.3 | 16.3 | 14.2 | 1.6 | 1.3 | 1.2 | 1.2 | 7.4 | 8.5 | 9.3 | 8.9 | |||
西昌 | 8.4 | 12.0 | 14.4 | 14.3 | 5.8 | 10.8 | 14.9 | 14.7 | 1.5 | 1.4 | 1.3 | 1.3 | 5.7 | 7.4 | 8.2 | 8.2 | |||
腾冲 | 5.6 | 9.3 | 13.4 | 14.8 | 3.4 | 8.3 | 15.5 | 18.2 | 1.9 | 1.6 | 1.5 | 1.4 | 5.1 | 6.7 | 7.9 | 8.3 | |||
昆明 | 6.9 | 11.5 | 15.1 | 17.1 | 5.3 | 13.6 | 21.3 | 26.2 | 1.7 | 1.3 | 1.1 | 1.1 | 6.3 | 8.4 | 9.8 | 10.4 | |||
房县 | 9.2 | 12.0 | 13.8 | 13.0 | 7.9 | 12.3 | 15.9 | 14.3 | 1.5 | 1.4 | 1.4 | 1.4 | 6.1 | 7.3 | 8.1 | 7.8 | |||
遂宁 | 10.2 | 12.3 | 13.7 | 13.1 | 7.3 | 9.8 | 12.1 | 11.0 | 1.8 | 1.7 | 1.6 | 1.7 | 7.2 | 8.2 | 8.8 | 8.5 | |||
内江 | 10.6 | 13.8 | 15.5 | 14.8 | 6.7 | 10.5 | 13.2 | 12.1 | 1.9 | 1.8 | 1.7 | 1.7 | 7.5 | 8.9 | 9.6 | 9.3 | |||
黄石 | 14.0 | 18.4 | 21.0 | 23.2 | 6.9 | 10.7 | 13.5 | 16.4 | 2.6 | 2.6 | 2.4 | 2.4 | 9.8 | 11.7 | 12.6 | 13.4 | |||
福州 | 12.4 | 18.2 | 22.8 | 28.4 | 10.1 | 19.9 | 28.4 | 39.9 | 1.4 | 1.0 | 1.0 | 0.9 | 8.5 | 10.7 | 12.4 | 13.9 | |||
长汀 | 12.9 | 17.9 | 21.3 | 26.8 | 8.5 | 15.4 | 21.0 | 30.0 | 1.9 | 1.6 | 1.5 | 1.5 | 10.2 | 12.0 | 13.1 | 14.6 | |||
平均值 | 9.1 | 12.3 | 14.4 | 15.2 | 6.5 | 11.6 | 15.9 | 17.5 | 1.8 | 1.6 | 1.5 | 1.5 | 6.9 | 8.3 | 9.1 | 9.3 |
表4
基于不同的最小降雨间歇划分次降雨过程得到的次降雨特征参数18站均值的配对t检验结果"
降雨特征指标 | 2 h与6 h | 2 h与10 h | 2 h与MITexp | 6 h与10h | 6 h与MITexp | 10 h与MITexp |
---|---|---|---|---|---|---|
雨量P | 0.002 | <0.001 | <0.001 | 0.072** | 0.057** | 0.626** |
历时D | <0.001 | <0.001 | <0.001 | 0.004 | 0.007 | 0.508** |
平均雨强I | 0.134** | 0.033* | 0.026* | 0.528** | 0.467** | 0.922** |
峰值雨强I30 | 0.027* | 0.001 | 0.002 | 0.235** | 0.190** | 0.805** |
[1] | 刘宝元, 谢云, 张科利. 土壤侵蚀预报模型 [M]. 北京: 中国科学技术出版社, 2001. |
[ Liu Baoyuan, Xie Yun, Zhang Keli. Soil erosion prediction model. Beijing, China: Science and Technology of China Press, 2001. ] | |
[2] |
Yin S Q, Xie Y, Liu B Y, et al. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions[J]. Hydrology and Earth System Sciences, 2015,19:4113-4126.
doi: 10.5194/hess-19-4113-2015 |
[3] | 陈杰, 许崇育, 郭生练, 等. 统计降尺度方法的研究进展与挑战[J]. 水资源研究, 2016,5(4):299-313. |
[ Chen Jie, Xu Chongyu, Guo Shenglian, et al. Progress and challenge in statistically downscaling climate model outputs. Journal of Water Resources Research, 2016,5(4):299-313. ] | |
[4] | 刘昌明, 刘文彬, 傅国斌, 等. 气候影响评价中统计降尺度若干问题的探讨[J]. 水科学进展, 2012,23(3):427-437. |
[ Liu Changming, Liu Wenbin, Fu Guobin, et al. A discussion of some aspects of statistical downscaling in climate impacts assessment. Advances in Water Science, 2012,23(3):427-437. ] | |
[5] | 范丽军, 符淙斌, 陈德亮. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005,20(3):320-329. |
[ Fan Lijun, Fu Congbin, Chen Deliang. Review on creating future climate change scenarios by statistical downscaling techniques. Advances in Earth Science, 2005,20(3):320-329. ] | |
[6] | Lake I, Gutowski W, Giorgi F, et al. CORDEX: Climate research and information for Regions[J]. Bulletin of the American Meteorological, 2017,98(8):189-192. doi: 10.1175/BAMS-D-17-0042.1. |
[7] | Maraun D, Widmann M. Statistical downscaling and bias correction for climate research [M]. Cambridge, UK: UK: Cambridge University Press, 2018. |
[8] | 殷水清, 谢云, 陈德亮, 等. 日以下尺度降雨随机模拟研究进展[J]. 地球科学进展, 2009,24(9):981-989. |
[ Yin Shuiqing, Xie Yun, Chen Deliang, et al. Review of stochastic simulation of sub-daily scale precipitation. Advances in Earth Science, 2009,24(9):981-989. ] | |
[9] | Peleg N, Fatichi S, Paschalis A, et al. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables[J]. Journal of Advances in Modeling Earth Systems, 2017,9(3):1595-1627. doi: 10.1002/2016MS000854. |
[10] | Bonta J V, Rao A R. Factors affecting the identification of independent storm events[J]. Journal of Hydrology, 1988,98(3):275-293. |
[11] | Bonta J V. Characterizing and estimating spatial and temporal variability of times between storms[J]. Transactions of the ASAE, 2001,44(6):1593-1601. |
[12] | Huff F A. Time distribution of rainfall in heavy storms[J]. Water Resource Research, 1967,3(4):1007-1019. |
[13] | Wenzel H G, Voorhees M L. An evaluation of the urban design storm concept [R]. Illinois, USA: Water Resources Center, University of Illinois, Urbana, 1981. |
[14] | Ziegler A D, Negishi J N, Sidle R C, et al. Impacts of logging disturbance on hillslope saturated hydraulic conductivity in a tropical forest in Peninsular Malaysia[J]. Catena, 2006,67(2):89-104. |
[15] | Cutrim E M C, Martin D W, Butzow D G, et al. Pilot analysis of hourly rainfall in central and Eastern Amazonia[J]. Journal of Climate, 2000,13(7):1326-1334. |
[16] | Dunkerley D. Intra-event intermittency of rainfall: An analysis of the metrics of rain and no-rain periods[J]. Hydrological Processes, 2015,29(15):3294-3305. |
[17] | Dunkerley D. Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site[J]. Hydrological Processes, 2008,22(26):5024-5036. |
[18] | Yen B C, Chow V T. Design hyetographs for small drainage structures[J]. Journal of the Hydraulics Division, 1980,106(6):1055-1076. |
[19] | Wischmeier W H. A rainfall erosion index for a universal soil-loss equation[J]. Soil Science Society of America Journal, 1959,23(3):246-249. |
[20] | Grace R A, Eagleson P S. The synreport of short-time-increment rainfall sequences [R]. No. 91. Cambridge, USA: Hydrodynamics Laboratory, Massachusetts Institute of Technology, 1966. |
[21] | Restrepo-Posada P J, Eagleson P S. Identification of independent rainstorms[J]. Journal of Hydrology, 1982,55(1):303-319. |
[22] | Yu R, Xu Y, Zhou T, et al. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J]. Geophysical Research Letters, 2007,34(13):173-180. |
[23] | Li J, Yu R, Sun W. Duration and seasonality of hourly extreme rainfall in the central eastern China[J]. Journal of Meteorological Research, 2013,27(6):799-807. |
[24] | Wang W, Yin S, Xie Y, et al. Effects of four storm patterns on soil loss from five soils under natural rainfall[J]. Catena, 2016,141:56-65. |
[25] | Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)[M]. Washington D C, USA: US Department of Agriculture Agriculture Handbook, 1997. |
[26] | USDA-Agricultural Research Service. Science documentation Revised Universal Soil Loss Equation Version 2 [M/OL]. . Washington D C, USA:USDA-ARS, 2013. |
[27] | Flanagan D C, Foster G R, Moldenhauer W C. Storm pattern effect on infiltration, runoff, and erosion[J]. Transactions of the ASAE, 1988,31(2):414-420. |
[28] | An J, Zheng F L, Han Y. Effects of rainstorm patterns on runoff and sediment yield processes[J]. Soil Science, 2014,179(6):293-303. |
[29] | 殷水清, 王杨, 谢云, 等. 中国降雨过程时程分型特征[J]. 水科学进展, 2014,25(5):617-624. |
[ Yin Shuiqing, Wang Yang, Xie Yun, et al. Characteristics of intra-storm temporal pattern over China. Advances in Water Science, 2014,25(5):617-624. ] | |
[30] | Nicks A D, Lane L J, Gander G A. Weather generator [M]. USDA-water erosion prediction project hillslope profile and watershed model documentation, NSERL report No. 10. West Lafayette, USA: USDA-ARS National Soil Erosion Research Laboratory, 1995: 2.1-2.22. |
[31] | Flanagan D C, Meyer C R, Yu B, et al. Evaluation and enhancement of the CLIGEN weather generator [C]// Ascough II J C, Flanagan D C. Soil erosion research for the 21st century: Proceedings of the international symposium. St. Joseph, USA: American Society of Agricultural Engineers, 2001: 107-110. |
[32] | Yu B. Improvement and evaluation of CLIGEN for storm generation[J]. Transactions of the ASAE, 2000,43(2):301-307. |
[33] | Yu B. Using CLIGEN to generate RUSLE climate inputs[J]. Transactions of the ASAE, 2002,45(4):993-1001. |
[34] |
Zhang Y, Liu B, Wang Z, et al. Evaluation of CLIGEN for storm generation on the semiarid Loess Plateau in China[J]. Catena, 2008,73(1):1-9.
doi: 10.1016/j.catena.2007.08.001 |
[35] | Chen J, Zhang X C, Liu W Z, et al. Assessment and improvement of CLIGEN non-precipitation parameters for the Loess Plateau of China[J]. Transactions of the ASAE, 2008,51(3):901-913. |
[36] | Elliot W J, Arnold C D. Validation of the weather generator CLIGEN with precipitation data from Uganda[J]. Transactions of the ASAE, 2001,44(1):53-58. |
[37] | Kou X, Ge J, Wang Y, et al. Validation of the weather generator CLIGEN with daily precipitation data from the Loess Plateau, China[J]. Journal of Hydrology, 2007,347(3):347-357. |
[38] | Fan J, Yang C, Liu C, et al. Assessment and validation of CLIGEN-simulated rainfall data for Northern Taiwan[J]. Paddy and Water Environment, 2013,11(1-4):161-173. |
[39] | Chen J, Zhang X C, Liu W Z, et al. Evaluating and extending CLIGEN precipitation generation for the Loess Plateau of China[J]. Journal of the American Water Resources Association, 2009,45(2):378-396. |
[40] | Yu B. An assessment of uncalibrated CLIGEN in Australia[J]. Agricultural and Forest Meteorology, 2003,119(3):131-148. |
[41] | Coppus R, Imeson A C. Extreme events controlling erosion and sediment transport in a semi-arid sub-andean valley[J]. Earth Surface Processes and Landforms, 2002,27(13):1365-1375. |
[42] | González-Hidalgo J C, Peña-Monné J L, Luis M D. A review of daily soil erosion in Western Mediterranean areas[J]. Catena, 2007,71(2):193-199. |
[43] | Yu B. Adjustment of CLIGEN parameters to generate precipitation change scenarios in southeastern Australia[J]. Catena, 2005,61(2):196-209. |
[44] | 赵松乔. 中国综合自然地理区划的一个新方案[J]. 地理学报, 1983,38(1):1-10. |
[ Zhao Songqiao. A new scheme for comprehensive physical regionalization in China. Acta Geographica Sinica, 1983,38(1):1-10. ] | |
[45] | Driscoll E D, Palhegyi G E, Strecker E W, et al. Analysis of storm event characteristics for selected rainfall gages throughout U.S [R]. Washington D C, USA: US Environmental Protection Agency, 1989. |
[46] | Yoo C, Park M, Kim H J, et al. Classification and evaluation of the documentary-recorded storm events in the Annals of the Choson Dynasty (1392-1910), Korea[J]. Journal of Hydrology, 2015,520:387-396. |
[47] | Wang W, Yin S, Xie Y, et al. Minimum inter-event times for rainfall in China[J]. Transactions of the ASABE, 2019,62(1):9-18. |
[48] | Huff F A. Time distributions of heavy rainstorms in Illinois [R]. Circular 173. Champaign, USA: Illinois State Water Survey, 1990. |
[49] | Back A J. Time distribution of heavy rainfall events in Urussanga, Santa Catarina State, Brazil[J]. Acta Scientiarum Agronomy, 2011,33(4):583-588. |
[50] | Azli M, Rao A R. Development of huff curves for Peninsular Malaysia[J]. Journal of Hydrology, 2010,388:77-84. |
[51] | Yin S, Xie Y, Nearing M, et al. Intra-storm temporal patterns of rainfall in China using Huff curves[J]. Transactions of the ASABE, 2016,59(6):1619-1632. |
[52] | Wang W, Flanagan D C, Yin S, et al. Assessment of CLIGEN precipitation and storm pattern generation in China[J]. Catena, 2018,169:96-106. |
[53] | Arnold J G, Williams J R. Stochastic generation of internal storm structure at a point[J]. Transactions of the ASAE, 1989,32(1):161-167. |
[54] | Wang W, Yin S, Flanagan D C, et al. Comparing CLIGEN-generated storm patterns with 1-minute and hourly precipitation data from China[J]. Journal of Applied Meteorology and Climatology, 2018,57(9):2005-2017. |
[55] | Li Z. A new framework for multi-site weather generator: A two-stage model combining a parametric method with a distribution-free shuffle procedure[J]. Climate Dynamics, 2014,43(3-4):657-669. |
[56] | Chen D. A monthly circulation climatology for Sweden and its application to a winter temperature case study[J]. International Journal of Climatology, 2000,20(10):1067-1076. |
[57] | Bardossy A, Plate E J. Space-time model for daily rainfall using atmospheric circulation patterns[J]. Water Resources Research, 1992,28(5):1247-1259. |
[58] | Fowler H J, Kilsby C G, O'Connell P E, et al. A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change[J]. Journal of Hydrology, 2005,308:50-66. |
[59] | Haberlandt U, Belli A, Bardossy A. Statistical downscaling of precipitation using a stochastic rainfall model conditioned on circulation patterns-an evaluation of assumptions[J]. International Journal of Climatology, 2015,35(3):417-432. |
[1] | 丁凯熙, 张利平, 宋晓猛, 佘敦先, 夏军. 北京地区汛期降雨时空演变特征及城市化影响研究[J]. 地理科学进展, 2019, 38(12): 1917-1932. |
[2] | 薛天翼, 王红亚. 湖泊(水库)沉积物分析在土壤侵蚀研究中的运用[J]. 地理科学进展, 2018, 37(7): 890-900. |
[3] | 刘希林. 全球视野下崩岗侵蚀地貌及其研究进展[J]. 地理科学进展, 2018, 37(3): 342-351. |
[4] | 李致颖, 方海燕. 基于TETIS模型的黑土区乌裕尔河流域径流与侵蚀产沙模拟研究[J]. 地理科学进展, 2017, 36(7): 873-885. |
[5] | 盛贺伟, 孙莉英, 蔡强国. 黄土坡面片蚀过程稳定含沙量及其影响因素[J]. 地理科学进展, 2016, 35(8): 1008-1016. |
[6] | 徐亚莉, 罗明良, 梁倍瑜, 昌小莉, 向卫, 张斌. DEM空间插值方法对土壤侵蚀模拟的影响研究——以USPED分析干热河谷典型冲沟为例[J]. 地理科学进展, 2016, 35(7): 870-877. |
[7] | 胡健, 吕一河. 土壤水分动态随机模型研究进展[J]. 地理科学进展, 2015, 34(3): 389-400. |
[8] | 盛美玲, 方海燕. WaTEM/SEDEM模型及其应用研究进展与展望[J]. 地理科学进展, 2014, 33(1): 85-91. |
[9] | 李相虎, 张奇, 邵敏. 基于TRMM数据的鄱阳湖流域降雨时空分布特征及其精度评价[J]. 地理科学进展, 2012, 31(9): 1164-1170. |
[10] | 林晨, 周生路, 吴绍华. 基于优化GeoCA模型的土壤侵蚀时空变化模拟——以福建省长汀县为例[J]. 地理科学进展, 2012, 31(7): 911-920. |
[11] | 彭琴, 齐玉春, 董云社, 何亚婷, 刘欣超, 孙良杰, 贾军强, 金钊. 干旱半干旱地区草地碳循环关键过程对降雨变化的响应[J]. 地理科学进展, 2012, 31(11): 1510-1518. |
[12] | 朱先进, 于贵瑞, 高艳妮, 王秋凤. 中国河流入海颗粒态碳通量及其变化特征[J]. 地理科学进展, 2012, (1): 118-122. |
[13] | 张伯宇. 近50年台湾东部台风强降雨事件的强度与频率变化特征[J]. 地理科学进展, 2012, (1): 46-55. |
[14] | 王红兵, 许炯心, 颜明. 影响土壤侵蚀的社会经济因素研究进展[J]. 地理科学进展, 2011, 30(3): 268-274. |
[15] | 陈晓安, 蔡强国, 郑明国, 李君兰. 岔巴沟流域次暴雨坡面土壤侵蚀经验模型[J]. 地理科学进展, 2011, 30(3): 325-329. |
|